Advanced Search
Article Contents

Modelling Air-Sea Fluxes during a Western Pacific Typhoon: Role of Sea Spray


doi: 10.1007/BF02915713

  • It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interracial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.
  • [1] LIU Bin, GUAN Changlong, Li'an XIE, ZHAO Dongliang, 2012: An Investigation of the Effects of Wave State and Sea Spray on an Idealized Typhoon Using an Air--Sea Coupled Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 391-406.  doi: 10.1007/s00376-011-1059-7
    [2] CHENG Xiaoping, FEI Jianfang, HUANG Xiaogang, ZHENG Jing, 2012: Effects of Sea Spray Evaporation and Dissipative Heating on Intensity and Structure of Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 810-822.  doi: 10.1007/s00376-012-1082-3
    [3] REN Xuejuan, William PERRIE, 2006: Air-sea Interaction of Typhoon Sinlaku (2002) Simulated by the Canadian MC2 Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 521-530.  doi: 10.1007/s00376-006-0521-4
    [4] Zi-Liang LI, Ping WEN, 2017: Comparison between the Response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 79-87.  doi: 10.1007/s00376-016-6027-9
    [5] Lei LIU, Guihua WANG, Ze ZHANG, Huizan WANG, 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1501-1518.  doi: 10.1007/s00376-022-1285-1
    [6] Xuefen ZHANG, Liangxu LI, Rongkang YANG, Ran GUO, Xia SUN, Jianping LUO, Hongbin CHEN, Daxin LIU, Kebing TANG, Wenwu PENG, Xiaodong HAN, Qiyun GUO, Xiaoxia LI, Xikun FEI, 2021: Comprehensive Marine Observing Experiment Based on High-Altitude Large Unmanned Aerial Vehicle (South China Sea Experiment 2020 of the “Petrel Project”), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 531-537.  doi: 10.1007/s00376-020-0314-1
    [7] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [8] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [9] ZHU Peijun, ZHENG Yongguang, ZHANG Chunxi, TAO Zuyu, 2005: A Study of the Extratropical Transformation of Typhoon Winnie (1997), ADVANCES IN ATMOSPHERIC SCIENCES, 22, 730-740.  doi: 10.1007/BF02918716
    [10] MING Jie, NI Yunqi, SHEN Xinyong, 2009: The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 26, 523-542.  doi: 10.1007/s00376-009-0523-0
    [11] Lin DENG, Wenhua GAO, Yihong DUAN, Yuqing WANG, 2019: Microphysical Properties of Rainwater in Typhoon Usagi (2013): A Numerical Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 510-526.  doi: 10.1007/s00376-019-8170-6
    [12] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2010: An Analysis of Typhoon Chanthu in June 2004 with Focus on the Impact on Thailand, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 14-32.  doi: 10.1007/s00376-009-8206-4
    [13] Shuai YANG, Xiba TANG, Shuixin ZHONG, Bin CHEN, Yushu ZHOU, Shouting GAO, Chengxin WANG, 2019: Convective Bursts Episode of the Rapidly Intensified Typhoon Mujigae (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 36, 541-556.  doi: 10.1007/s00376-019-8142-x
    [14] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [15] Dongmei XU, Feifei SHEN, Jinzhong MIN, Aiqing SHU, 2021: Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 983-993.  doi: 10.1007/s00376-021-0252-6
    [16] Yangmei TIAN, John L. MCBRIDE, Fumin REN, Guoping LI, Tian FENG, 2022: Changes in Typhoon Regional Heavy Precipitation Events over China from 1960 to 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 272-283.  doi: 10.1007/s00376-021-1015-0
    [17] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [18] Sung Hyup YOU, Yong Hee LEE, Woo Jeong LEE, 2011: Parameterization and Application of Storm Surge/Tide Modeling Using a Genetic Algorithm for Typhoon Periods, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1067-1076.  doi: 10.1007/s00376-011-0113-9
    [19] Hongbin CHEN, Jun LI, Wenying HE, Shuqing MA, Yingzhi WEI, Jidong PAN, Yu ZHAO, Xuefen ZHANG, Shuzhen HU, 2021: IAP’s Solar-Powered Unmanned Surface Vehicle Actively Passes through the Center of typhoon Sinlaku (2020), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 538-545.  doi: 10.1007/s00376-021-1006-1
    [20] ZHOU Feifan, MU Mu, 2012: The Time and Regime Dependencies of Sensitive Areas for Tropical Cyclone Prediction Using the CNOP Method, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 705-716.  doi: 10.1007/s00376-012-1174-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Modelling Air-Sea Fluxes during a Western Pacific Typhoon: Role of Sea Spray

  • 1. Department of Atmospheric Sciences,Zhongshan University,Guangzhou 510275

Abstract: It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interracial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return