Advanced Search
Article Contents

Abrupt Climate Change around 4 ka BP: Role of the Thermohaline Circulation as Indicated by a GCM Experiment


doi: 10.1007/BF02915716

  • A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia and a significant reduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow River Valley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by the weakening of the THC.
  • [1] Zhengyu LIU, 2006: Glacial Thermohaline Circulation and Climate: Forcing from the North or South?, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 199-206.  doi: 10.1007/s00376-006-0199-7
    [2] MA Hao, WU Lixin, LI Chun, 2010: The Role of Southern High Latitude Wind Stress in Global Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 371-381.  doi: 10.1007/s00376-009-9047-x
    [3] YU Yongqiang, ZHENG Weipeng, WANG Bin, LIU Hailong, LIU Jiping, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean--Atmosphere--Land System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 99-117.  doi: 10.1007/s00376-010-9112-5
    [4] ZhouTianjun, Zhang Xuehong, Yu Yongqiang, Yu Rucong, Liu Xiying, Jin Xiangze, 2000: Response of IAP/ LASG GOALS Model to the Coupling of Air-Sea Fresh Water Exchange, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 473-486.  doi: 10.1007/s00376-000-0037-2
    [5] Jin Xiangze, Huang Ruixin, Yang Jiayan, 1999: Centennial Oscillations in an Ocean-ice Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 323-342.  doi: 10.1007/s00376-999-0012-5
    [6] BAI Jie, GE Quansheng, DAI Junhu, 2011: The Response of First Flowering Dates to Abrupt Climate Change in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 564-572.  doi: 10.1007/s00376-010-9219-8
    [7] LU Riyu, Buwen DONG, 2008: Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 723-736.  doi: 10.1007/s00376-008-0723-z
    [8] Jianhua LU, Tapio SCHNEIDER, 2017: Evolving Perspectives on Abrupt Seasonal Changes of the General Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1185-1194.  doi: 10.1007/s00376-017-7068-4
    [9] Xiaoxin WANG, Dabang JIANG, Xianmei LANG, 2018: Climate Change of 4°C Global Warming above Pre-industrial Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 757-770.  doi: 10.1007/s00376-018-7160-4
    [10] BUHE Cholaw, Ulrich CUBASCH, LIN Yonghui, JI Liren, 2003: The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 755-766.  doi: 10.1007/BF02915400
    [11] Luo Zhexian, 1987: ABRUPT CHANGE OF FLOW PATTERN IN BAROCLINIC ATMOSPHERE FORCED BY JOINT EFFECTS OF DIABATIC HEATING AND OROGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 137-144.  doi: 10.1007/BF02677060
    [12] Nitima ASCHARIYAPHOTHA, Prungchan WONGWISES, Somchai WONGWISES, Usa Wannasingha HUMPHRIES, YOU Xiaobao, 2008: Simulation of Seasonal Circulations and Thermohaline Variabilities in the Gulf of Thailand, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 489-506.  doi: 10.1007/s00376-008-0489-3
    [13] ZHOU Botao, WANG Huijun, 2008: Interdecadal Change in the Connection Between Hadley Circulation and Winter Temperature in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 24-30.  doi: 10.1007/s00376-008-0024-6
    [14] Zhao Ming, Zeng Xinmin, 2002: A Theoretical Analysis on the Local Climate Change Induced by the Change of Landuse, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 45-63.  doi: 10.1007/s00376-002-0033-9
    [15] Li Chongyin, Mu Mingquan, 2001: The Influence of the Indian Ocean Dipole on Atmospheric Circulation and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 831-843.
    [16] S. PANCHEV, T. SPASSOVA, 2005: Simple General Atmospheric Circulation and Climate Models with Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 765-769.  doi: 10.1007/BF02918720
    [17] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [18] Wenshou TIAN, Jinlong HUANG, Jiankai ZHANG, Fei XIE, Wuke WANG, Yifeng PENG, 2023: Role of Stratospheric Processes in Climate Change: Advances and Challenges, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1379-1400.  doi: 10.1007/s00376-023-2341-1
    [19] SUN Guodong, MU Mu, 2011: Response of a Grassland Ecosystem to Climate Change in a Theoretical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1266-1278.  doi: 10.1007/s00376-011-0169-6
    [20] Ge Ling, Liang Jiaxing, Chen Yiliang, 1996: Spatial / Temporal Features of Antarctic Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 375-382.  doi: 10.1007/BF02656854

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Abrupt Climate Change around 4 ka BP: Role of the Thermohaline Circulation as Indicated by a GCM Experiment

  • 1. Department of Atmospheric Sciences,School of Physics, Peking University,Beijing 100871,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,Department of Atmospheric Sciences,School of Physics, Peking University,Beijing 100871,Department of Atmospheric Sciences,School of Physics, Peking University,Beijing 100871,Department of Atmospheric Sciences,School of Physics, Peking University,Beijing 100871,Key Lab of Environmental Change and Natural Disaster,Ministry of Education,Institute of Resources Science,Beijing Normal University,Beijing 100875

Abstract: A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia and a significant reduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow River Valley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by the weakening of the THC.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return