Advanced Search
Article Contents

Interaction of Typhoon and Mesoscale Vortex


doi: 10.1007/BF02915719

  • Under two types of initial tropical cyclone structures that are characterized by high and low vorticity zones, four sets of numerical experiments have been performed to investigate the interaction of a tropical cyclone with an adjacent mesoscale vortex (MSV) and its impact on the tropical cyclone intensity change,using a quasi-geostrophic barotropic vorticity equation model with a horizontal resolution of 0.5 km. The results suggest that the interaction of a tropical cyclone characterized by a high vorticity zonal structure and an MSV would result in an intensification of the cyclone. Its central pressure decreases by more than 14 hPa. In the process of the interaction, the west and middle segments of the high vorticity zone evolve into two peripheral spiral bands of the tropical cyclone, and the merging of the east segment and the inward propagating MSV forms a new vorticity accumulation area, wherein the maximum vorticity is remarkably greater than that in the center of the initial tropical cyclone circulation. It is this process of merging and strengthening that causes a greater pressure decrease in the center of the tropical cyclone. This process is also more complicated than those that have been studied in the past, which indicated that only the inward transfer of vorticity of the MSV can result in the strengthening of the tropical cyclone.
  • [1] Liguang WU, Haikun ZHAO, Chao WANG, Jian CAO, Jia LIANG, 2022: Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 205-221.  doi: 10.1007/s00376-021-1026-x
    [2] MING Jie, NI Yunqi, SHEN Xinyong, 2009: The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 26, 523-542.  doi: 10.1007/s00376-009-0523-0
    [3] Jia LIANG, Liguang WU, Guojun GU, 2018: Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 35, 567-579.  doi: 10.1007/s00376-017-7155-6
    [4] SHEN Xinyong, DING Yihui, ZHAO Nan, 2006: Properties and Stability of a Meso-Scale Line-Form Disturbance, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 282-290.  doi: 10.1007/s00376-006-0282-0
    [5] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2023: Modulation of the Wind Field Structure of Initial Vortex on the Relationship between Tropical Cyclone Size and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1707-1721.  doi: 10.1007/s00376-023-2233-4
    [6] CHENG Xiaoping, FEI Jianfang, HUANG Xiaogang, ZHENG Jing, 2012: Effects of Sea Spray Evaporation and Dissipative Heating on Intensity and Structure of Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 810-822.  doi: 10.1007/s00376-012-1082-3
    [7] ZENG Zhihua, Yuqing WANG, DUAN Yihong, CHEN Lianshou, GAO Zhiqiu, 2010: On Sea Surface Roughness Parameterization and Its Effect on Tropical Cyclone Structure and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 337-355.  doi: 10.1007/s00376-009-8209-1
    [8] MA Zhanhong, FEI Jianfang, HUANG Xiaogang, CHENG Xiaoping, 2014: Impacts of the Lowest Model Level Height on Tropical Cyclone Intensity and Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 421-434.  doi: 10.1007/s00376-013-3044-9
    [9] ZHONG Wei, LU Han-Cheng, Da-Lin ZHANG, 2010: Mesoscale Barotropic Instability of Vortex Rossby Waves in Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 243-252.  doi: 10.1007/s00376-009-8183-7
    [10] DUAN Yihong, WU Rongsheng, YU Hui, LIANG Xudong, Johnny C L CHAN, 2004: The Role of -effect and a Uniform Current on Tropical Cyclone Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 75-86.  doi: 10.1007/BF02915681
    [11] QIN Xiaohao, MU Mu, 2014: Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 252-262.  doi: 10.1007/s00376-013-3008-0
    [12] Chenxi WANG, Zhihua ZENG, Ming YING, 2020: Uncertainty in Tropical Cyclone Intensity Predictions due to Uncertainty in Initial Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 278-290.  doi: 10.1007/s00376-019-9126-6
    [13] HUANG Hong, JIANG Yongqiang, CHEN Zhongyi, LUO Jian, WANG Xuezhong, 2014: Effect of Tropical Cyclone Intensity and Instability on the Evolution of Spiral Bands, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1090-1100.  doi: 10.1007/s00376-014-3108-5
    [14] Charlie C. F. LOK, Johnny C. L. CHAN, Ralf TOUMI, 2022: Importance of Air-Sea Coupling in Simulating Tropical Cyclone Intensity at Landfall, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1777-1786.  doi: 10.1007/s00376-022-1326-9
    [15] YAO Zhigang, LIN Longfu, CHEN Hongbin, FEI Jianfang, 2008: A Scheme for Estimating Tropical Cyclone Intensity Using AMSU-A Data, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 96-106.  doi: 10.1007/s00376-008-0096-3
    [16] Zhang Ren, Yu Zhihao, 2000: Low-Frequency CISK-Rossby Wave and Stratospheric QBO in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 311-321.  doi: 10.1007/s00376-000-0012-y
    [17] MA Leiming, DUAN Yihong, ZHU Yongti, 2004: The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 951-963.  doi: 10.1007/BF02915597
    [18] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [19] Liguang WU, Bin WANG, Johnny C. L. CHAN, Kyung-Ja HA, Il-Ju MOON, Jun MATSUMOTO, Zhemin TAN, Ke FAN, 2022: Preface to the Special Issue: Climate Change and Variability of Tropical Cyclone Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 203-204.  doi: 10.1007/s00376-021-1020-3
    [20] Xiaohao QIN, Wansuo DUAN, Hui XU, 2020: Sensitivity to Tendency Perturbations of Tropical Cyclone Short-range Intensity Forecasts Generated by WRF, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 291-306.  doi: 10.1007/s00376-019-9187-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2004
Manuscript revised: 10 July 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Interaction of Typhoon and Mesoscale Vortex

  • 1. Chinese Academy of Meteorological Sciences, Beijing 100081,Nanjing Institute of Meteorology, Nanjing 210044

Abstract: Under two types of initial tropical cyclone structures that are characterized by high and low vorticity zones, four sets of numerical experiments have been performed to investigate the interaction of a tropical cyclone with an adjacent mesoscale vortex (MSV) and its impact on the tropical cyclone intensity change,using a quasi-geostrophic barotropic vorticity equation model with a horizontal resolution of 0.5 km. The results suggest that the interaction of a tropical cyclone characterized by a high vorticity zonal structure and an MSV would result in an intensification of the cyclone. Its central pressure decreases by more than 14 hPa. In the process of the interaction, the west and middle segments of the high vorticity zone evolve into two peripheral spiral bands of the tropical cyclone, and the merging of the east segment and the inward propagating MSV forms a new vorticity accumulation area, wherein the maximum vorticity is remarkably greater than that in the center of the initial tropical cyclone circulation. It is this process of merging and strengthening that causes a greater pressure decrease in the center of the tropical cyclone. This process is also more complicated than those that have been studied in the past, which indicated that only the inward transfer of vorticity of the MSV can result in the strengthening of the tropical cyclone.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return