Advanced Search
Article Contents

Large Eddy Simulation and Study of the Urban Boundary Layer


doi: 10.1007/BF02915732

  • Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
  • [1] Lin Naishi, Zhou Zugang, Zhou Liufei, 1998: An Analytical Study on the Urban Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 258-266.  doi: 10.1007/s00376-998-0044-2
    [2] ZHANG Ning, ZHU Lianfang, ZHU Yan, 2011: Urban Heat Island and Boundary Layer Structures under Hot Weather Synoptic Conditions: A Case Study of Suzhou City, China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 855-865.  doi: 10.1007/s00376-010-0040-1
    [3] GUO Xiaofeng, CAI Xuhui, 2005: Footprint Characteristics of Scalar Concentration in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 821-830.  doi: 10.1007/BF02918682
    [4] Shuang WU, Guiqian TANG, Yinghong WANG, Rong MAI, Dan YAO, Yanyu KANG, Qinglu WANG, Yuesi WANG, 2021: Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1165-1176.  doi: 10.1007/s00376-020-0254-9
    [5] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [6] GU Zhaolin, QIU Jian, ZHAO Yongzhi, LI Yun, 2008: Simulation of Terrestrial Dust Devil Patterns, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 31-42.  doi: 10.1007/s00376-008-0031-7
    [7] Liu Shikuo, Huang Wei, Rong Pingping, 1992: Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 147-156.  doi: 10.1007/BF02657505
    [8] Rui WANG, Yiting ZHU, Fengxue QIAO, Xin-Zhong LIANG, Han ZHANG, Yang DING, 2021: High-resolution Simulation of an Extreme Heavy Rainfall Event in Shanghai Using the Weather Research and Forecasting Model: Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 98-115.  doi: 10.1007/s00376-020-9255-y
    [9] Zhao Ming, Xu Yinzi, Wu Rongsheng, 1989: The Wind Structure in Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 365-376.  doi: 10.1007/BF02661542
    [10] Hu Yinqiao, Su Congxian, Ge Zhengmo, 1988: A TWO-DIMENSIONAL AND STEADY-STATE NUMERICAL MODEL OF THE PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 523-534.  doi: 10.1007/BF02656796
    [11] Yu SHI, Qingcun ZENG, Fei HU, Weichen DING, Zhe ZHANG, Kang ZHANG, Lei LIU, 2023: Different Turbulent Regimes and Vertical Turbulence Structures of the Urban Nocturnal Stable Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1089-1103.  doi: 10.1007/s00376-022-2198-8
    [12] Zhao Ming, 1987: ON THE PARAMETERIZATION OF THE VERTICAL VELOCITY AT THE TOP OF PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 233-239.  doi: 10.1007/BF02677070
    [13] Li Xingsheng, Yang Shuowen, 1986: A MODEL STUDY OF THE NOCTURNAL BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 59-71.  doi: 10.1007/BF02680045
    [14] ZHAO Qiaohua, SUN Jihua, ZHU Guangwei, 2012: Simulation and Exploration of the Mechanisms Underlying the Spatiotemporal Distribution of Surface Mixed Layer Depth in a Large Shallow Lake, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1360-1373.  doi: 10.1007/s00376-012-1262-1
    [15] LIU Huizhi, Sang Jianguo, 2011: Numerical Simulation of Roll Vortices in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 477-482.  doi: 10.1007/s00376-010-9229-6
    [16] Meiying DONG, Chunxiao JI, Feng CHEN, Yuqing WANG, 2019: Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 431-450.  doi: 10.1007/s00376-018-7281-9
    [17] Bangjun Cao, Xianyu Yang, JUN WEN, Qin Hu, Ziyuan Zhu, 2023: Large eddy simulation of vertical structure and size distribution of deep layer clouds, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3134-2
    [18] Hongxiong XU, Dajun ZHAO, 2021: Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1889-1904.  doi: 10.1007/s00376-021-1016-z
    [19] Hongxiong Xu, Dajun Zhao, 2023: Effect of the vertical diffusion of moisture in the planetary boundary layer on an idealized tropical cyclone, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 
    [20] Jiang Weimei, Wang Xuemei, 1996: A 2-D Non-local Closure Model for Atmospheric Boundary Layer Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 169-182.  doi: 10.1007/BF02656860

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2004
Manuscript revised: 10 July 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Large Eddy Simulation and Study of the Urban Boundary Layer

  • 1. Department of Atmospheric Sciences, Nanjing University, Nangjing 210093;Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089,Department of Atmospheric Sciences, Nanjing University, Nangjing 210093

Abstract: Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return