Advanced Search
Article Contents

Climate Change Signal Analysis for Northeast Asian Surface Temperature


doi: 10.1007/BF02918506

  • Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.
  • [1] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [2] DING Yihui, REN Guoyu, ZHAO Zongci, XU Ying, LUO Yong, LI Qiaoping, ZHANG Jin, 2007: Detection, Causes and Projection of Climate Change over China: An Overview of Recent Progress, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 954-971.  doi: 10.1007/s00376-007-0954-4
    [3] CHEN Wei, and LU Riyu, 2014: A Decadal Shift of Summer Surface Air Temperature over Northeast Asia around the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 735-742.  doi: 10.1007/s00376-013-3154-4
    [4] Yu NIE, Jie WU, Jinqing ZUO, Hong-Li REN, Adam A. SCAIFE, Nick DUNSTONE, Steven C. HARDIMAN, 2023: Subseasonal Prediction of Early-summer Northeast Asian Cut-off Lows by BCC-CSM2-HR and GloSea5, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2127-2134.  doi: 10.1007/s00376-022-2197-9
    [5] Buwen DONG, Rowan T. SUTTON, Wei CHEN, Xiaodong LIU, Riyu LU, Ying SUN, 2016: Abrupt Summer Warming and Changes in Temperature Extremes over Northeast Asia Since the Mid-1990s: Drivers and Physical Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1005-1023.  doi: 10.1007/s00376-016-5247-3
    [6] Bo FU, Jingyi LI, Thomas GASSER, Philippe CIAIS, Shilong PIAO, Shu TAO, Guofeng SHEN, Yuqin LAI, Luchao HAN, Bengang LI, 2022: Climate Warming Mitigation from Nationally Determined Contributions, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1217-1228.  doi: 10.1007/s00376-022-1396-8
    [7] YANG Yang, REN Rongcai, Ming CAI, RAO Jian, 2015: Attributing Analysis on the Model Bias in Surface Temperature in the Climate System Model FGOALS-s2 through a Process-Based Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 457-469.  doi: 10.1007/s00376-014-4061-z
    [8] ZHANG Jinqiang, CHEN Hongbin, BIAN Jianchun, XUAN Yuejian, DUAN Yunjun, Maureen CRIBB, 2012: Development of Cloud Detection Methods Using CFH, GTS1, and RS80 Radiosondes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 236-248.  doi: 10.1007/s00376-011-0215-4
    [9] Wei CHEN, Xiaowei HONG, Riyu LU, Aifen JIN, Shizhu JIN, Jae-Cheol NAM, Jin-Ho SHIN, Tae-Young GOO, Baek-Jo KIM, 2016: Variation in Summer Surface Air Temperature over Northeast Asia and Its Associated Circulation Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1-9.  doi: 10.1007/s00376-015-5056-0
    [10] Xingyan ZHOU, Riyu LU, 2024: The Unprecedented Extreme Anticyclonic Anomaly over Northeast Asia in July 2021 and Its Climatic Impacts, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 608-618.  doi: 10.1007/s00376-023-3026-5
    [11] Zeng Qingcun, Zhang Banglin, Yuan Chongguang, Lu Peisheng, Yang Fanglin, Li Xu, Wang Huijun, 1994: A Note on Some Methods Suitable for Verifying and Correcting the Prediction of Climatic Anomaly, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 121-127.  doi: 10.1007/BF02666540
    [12] Xiujing YU, Guoyu REN, Panfeng ZHANG, Jingbiao HU, Ning LIU, Jianping LI, Chenchen ZHANG, 2020: Extreme Temperature Change of the Last 110 Years in Changchun, Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 347-358.  doi: 10.1007/s00376-020-9165-z
    [13] ZHANG Lixia* and ZHOU Tianjun, , 2014: An Assessment of Improvements in Global Monsoon Precipitation Simulation in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 165-178.  doi: 10.1007/s00376-013-2164-6
    [14] HAN Zuoqiang, YAN Zhongwei*, LI Zhen, LIU Weidong, and WANG Yingchun, 2014: Impact of Urbanization on Low-Temperature Precipitation in Beijing during 19602008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 48-56.  doi: 10.1007/s00376-013-2211-3
    [15] Abebe Kebede, Kirsten Warrach-sagi, Thomas Schwitalla, Volker Wulfmeyer, Tesfaye Amdie, Markos Ware, 2024: Assessment of Seasonal Rainfall Prediction in Ethiopia: Evaluating a Dynamic Recurrent Neural Network to Downscale ECMWF-SEAS5 Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3345-1
    [16] DING Yihui, LIU Yiming, SHI Xueli, LI Qingquan, LI Qiaoping, LIU Yan, 2006: Multi-Year Simulations and Experimental Seasonal Predictions for Rainy Seasons inChina byUsing a Nested Regional ClimateModel (RegCM NCC) Part II: The Experimental Seasonal Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 487-503.  doi: 10.1007/s00376-006-0323-8
    [17] Tianjun ZHOU, Wenxia ZHANG, Lixia ZHANG, Robin CLARK, Cheng QIAN, Qinghong ZHANG, Hui QIU, Jie JIANG, Xing ZHANG, 2022: 2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1598-1607.  doi: 10.1007/s00376-022-2063-9
    [18] Aiguo Dai, G.A. Meehl, W.M. Washington, T.M.L. Wigley, 2001: Climate Changes in the 21st Century over the Asia-Pacific Region Simulated by the NCAR CSM and PCM, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 639-658.
    [19] Lijing CHENG, John ABRAHAM, Kevin E. TRENBERTH, John FASULLO, Tim BOYER, Michael E. MANN, Jiang ZHU, Fan WANG, Ricardo LOCARNINI, Yuanlong LI, Bin ZHANG, Zhetao TAN, Fujiang YU, Liying WAN, Xingrong CHEN, Xiangzhou SONG, Yulong LIU, Franco RESEGHETTI, Simona SIMONCELLI, Viktor GOURETSKI, Gengxin CHEN, Alexey MISHONOV, Jim REAGAN, 2022: Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 373-385.  doi: 10.1007/s00376-022-1461-3
    [20] Ge Ling, Liang Jiaxing, Chen Yiliang, 1996: Spatial / Temporal Features of Antarctic Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 375-382.  doi: 10.1007/BF02656854

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2005
Manuscript revised: 10 March 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Climate Change Signal Analysis for Northeast Asian Surface Temperature

  • 1. Division of Management Information Science, Dong-A University, Busan 604-714,Department of Data Science, Inje University, Kimhae 621-749,Department of Statistics, Pusan National University, Busan 609-735,Climate Research Laboratory, Meteorological Research Institute, Korean Meteorological Administration, Seoul 156-720,Climate Research Laboratory, Meteorological Research Institute, Korean Meteorological Administration, Seoul 156-720;Meteorological Institute of the University of Bonn, Germany

Abstract: Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return