Advanced Search
Article Contents

Humidity Effect and Its Influence on the Seasonal Distribution of Precipitation δ18O in Monsoon Regions


doi: 10.1007/BF02918516

  • The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit △Td in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and △Td are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation.Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of meanmonthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud aresimulated. A very good agreement between the seasonal variations of the simulated mean δ18O and themean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensateof cloud experiences a temperature effect. Such a result is markedly different from the amount effect atthe ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be foundthat, in the dry season from November to April, the increasing trend with falling distance of δ18O in fallingraindrops corresponds remarkably to the great ATd, showing a strong evaporation enrichment function infalling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displaysan unapparent increase corresponding to the small ATd, except in May. By comparing the simulated meanδ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthlyδ18O variations agree very well. On average, the δ18O values are relatively lower because of the highlymoist air, heavy rainfall, small △Td and weak evaporation enrichment function of stable isotopes in thefalling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect.
  • [1] ZHANG Xinping, LIU Jingmiao, TIAN Lide, HE Yuanqing, YAO Tandong, 2004: Variations of 18O in Precipitation along Vapor Transport Paths, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 562-572.  doi: 10.1007/BF02915724
    [2] ZHANG Dingyuan, LIAO Hong, WANG Yuesi, 2014: Simulated Spatial Distribution and Seasonal Variation of Atmospheric Methane over China: Contributions from Key Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 283-292.  doi: 10.1007/s00376-013-3018-y
    [3] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [4] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [5] LIU Xiangcui, LIU Hailong, 2014: Heat Budget of the South-Central Equatorial Pacific in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 669-680.  doi: 10.1007/s00376-013-2299-5
    [6] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [7] YIN Shuiqing, LI Weijing, Deliang CHEN, Jee-Hoon JEONG, GUO Wenli, 2011: Diurnal Variations of Summer Precipitation in the Beijing Area and the Possible Effect of Topography and Urbanization, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 725-734.  doi: 10.1007/s00376-010-9240-y
    [8] SONG Lianchun, A. J. CANNON, P. H. WHITFIELD, 2007: Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 459-473.  doi: 10.1007/s00376-007-0459-1
    [9] Tingting HAN, Shengping HE, Huijun WANG, Xin HAO, 2019: Variation in Principal Modes of Midsummer Precipitation over Northeast China and Its Associated Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 55-64.  doi: 10.1007/s00376-018-8072-z
    [10] Qian Yongfu, Zhang Qiong, Yao Yonghong, Zhang Xuehong, 2002: Seasonal Variation and Heat Preference of the South Asia High, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 821-836.  doi: 10.1007/s00376-002-0047-3
    [11] Zuohao CAO, Ronald E.STEWART, M.K.YAU, 2004: A New Perspective of the Physical Processes Associated with the Clear-Sky Greenhouse Effect over High Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 171-180.  doi: 10.1007/BF02915703
    [12] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [13] LI Jiawei, HAN Zhiwei, 2012: A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 101-117.  doi: 10.1007/s00376-011-0234-1
    [14] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [15] Pratima GUPTA, Shalendra Pratap SINGH, Ashok JANGID, Ranjit KUMAR, 2017: Characterization of Black Carbon in the Ambient Air of Agra, India: Seasonal Variation and Meteorological Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1082-1094.  doi: 10.1007/s00376-017-6234-z
    [16] LI Qiang, ZHANG Renhe, 2012: Seasonal Variation of Climatological Bypassing Flows around the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1100-1110.  doi: 10.1007/s00376-012-1154-4
    [17] Peng Yongqing, Yan Shaojin, 1994: Seasonal Variation Features of Western North Pacific Tropical Cyclone Tracks with Their Predictability, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 463-469.  doi: 10.1007/BF02658167
    [18] KUANG Xueyuan, ZHANG Yaocun, 2005: Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 831-840.  doi: 10.1007/BF02918683
    [19] HU Ruijin, LIU Qinyu, MENG Xiangfeng, J. Stuart GODFREY, 2005: On the Mechanism of the Seasonal Variability of SST in the Tropical Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 451-462.  doi: 10.1007/BF02918758
    [20] LI Wei, CHEN Longxun, 2003: Characteristics of the Seasonal Variation of the Surface Total Heating over the Tibetan Plateau and Its Surrounding Area in Summer 1998 and Its Relationship with the Convection over the Subtropical Area of the Western Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 343-348.  doi: 10.1007/BF02690792

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2005
Manuscript revised: 10 March 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Humidity Effect and Its Influence on the Seasonal Distribution of Precipitation δ18O in Monsoon Regions

  • 1. College of Resources and Environment Sciences, Hunan Normal University, Changsha 410081,Chinese Academy of Meteorological Sciences, Beijing 100081,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000

Abstract: The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit △Td in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and △Td are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation.Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of meanmonthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud aresimulated. A very good agreement between the seasonal variations of the simulated mean δ18O and themean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensateof cloud experiences a temperature effect. Such a result is markedly different from the amount effect atthe ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be foundthat, in the dry season from November to April, the increasing trend with falling distance of δ18O in fallingraindrops corresponds remarkably to the great ATd, showing a strong evaporation enrichment function infalling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displaysan unapparent increase corresponding to the small ATd, except in May. By comparing the simulated meanδ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthlyδ18O variations agree very well. On average, the δ18O values are relatively lower because of the highlymoist air, heavy rainfall, small △Td and weak evaporation enrichment function of stable isotopes in thefalling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return