Advanced Search
Article Contents

Evaluation of Mid-Depth Currents of NCEP Reanalysis Data in the Tropical Pacific Using ARGO Float Position Information


doi: 10.1007/BF02918711

  • The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats.The average speed difference between NCEP and ARGO values ranges from about -2.3 cms-1 to -1.8cms-1. The second is that the velocity difference between the ocean model and the observations at 2000dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.
  • [1] Imoleayo Ezekiel GBODE, Toju Esther BABALOLA, Gulilat Tefera DIRO, Joseph Daniel INTSIFUL, 2023: Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 570-586.  doi: 10.1007/s00376-022-2161-8
    [2] Deniz BOZKURT, David H. BROMWICH, Jorge CARRASCO, Keith M. HINES, Juan Carlos MAUREIRA, Roberto RONDANELLI, 2020: Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 477-493.  doi: 10.1007/s00376-020-9183-x
    [3] ZHAO Tianbao, FU Congbin, 2006: Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 593-604.  doi: 10.1007/s00376-006-0593-1
    [4] YAN Changxiang, ZHU Jiang, XIE Jiping, 2015: An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1460-1472.  doi: 10.1007/s00376-015-4121-z
    [5] ZHAO Tianbao, FU Congbin, 2009: Intercomparison of the Summertime Subtropical High from the ERA-40 and NCEP/NCAR Reanalysis over East Eurasia and the western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 119-131.  doi: 10.1007/s00376-009-0119-8
    [6] Irina V. GORODETSKAYA, Tiago SILVA, Holger SCHMITHÜSEN, Naohiko HIRASAWA, 2020: Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 455-476.  doi: 10.1007/s00376-020-9221-8
    [7] HAN Guijun, FU Hongli, ZHANG Xuefeng, LI Wei, WU Xinrong, WANG Xidong, ZHANG Lianxin, 2013: A Global Ocean Reanalysis Product in the China Ocean Reanalysis (CORA) Project, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1621-1631.  doi: 10.1007/s00376-013-2198-9
    [8] HAN Guijun, LI Wei, ZHANG Xuefeng, WANG Xidong, WU Xinrong, FU Hongli, ZHANG Xiaoshuang, ZHANG Lianxin, and LI Dong, 2013: A new version of regional ocean reanalysis for coastal waters of China and adjacent seas, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 974-982.  doi: 10.1007/s00376-012-2195-4
    [9] HAN Guijun, LI Wei, ZHANG Xuefeng, LI Dong, HE Zhongjie, WANG Xidong, WU Xinrong, YU Ting, MA Jirui, 2011: A Regional Ocean Reanalysis System for Coastal Waters of China and Adjacent Seas, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 682-690.  doi: 10.1007/s00376-010-9184-2
    [10] LI Dan, BIAN Jianchun, 2015: Observation of a Summer Tropopause Fold by Ozonesonde at Changchun, China: Comparison with Reanalysis and Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1354-1364.  doi: 10.1007/s00376-015-5022-x
    [11] RAO Jian, REN Rongcai, YANG Yang, 2015: Parallel Comparison of the Northern Winter Stratospheric Circulation in Reanalysis and in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 952-996.  doi: 10.1007/s00376-014-4192-2
    [12] ZHOU Lian-Tong, HUANG Ronghui, 2010: An Assessment of the Quality of Surface Sensible Heat Flux Derived from Reanalysis Data through Comparison with Station Observations in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 500-512.  doi: 10.1007/s00376-009-9081-8
    [13] HU Ruijin, WEI Meng, 2013: Intraseasonal Oscillation in Global Ocean Temperature Inferred from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 29-40.  doi: 10.1007/s00376-012-2045-4
    [14] Zeng Qingcun, Zhang Minghua, 2000: Wave-Mean Flow Interaction: the Role of Continuous-Spectrum Disturbances, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 1-17.  doi: 10.1007/s00376-000-0039-0
    [15] Zhu Xun, 1987: ON GRAVITY WAVE-MEAN FLOW INTERACTIONS IN A THREE DIMENSIONAL STRATIFIED ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 287-299.  doi: 10.1007/BF02663599
    [16] Xuan LI, Ruiqiang DING, Jianping LI, 2020: Quantitative Comparison of Predictabilities of Warm and Cold Events Using the Backward Nonlinear Local Lyapunov Exponent Method, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 951-958.  doi: 10.1007/s00376-020-2100-5
    [17] YAN Changxiang, ZHU Jiang, ZHOU Guangqing, 2007: Impacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data ssimilationImpacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 383-398.  doi: 10.1007/s00376-007-0383-4
    [18] Yuanyuan YANG, Min ZHONG, Wei FENG, Dapeng MU, 2021: Detecting Regional Deep Ocean Warming below 2000 Meter Based on Altimetry, GRACE, Argo, and CTD Data, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1778-1790.  doi: 10.1007/s00376-021-1049-3
    [19] CHEN Bomin, JI Liren, YANG Peicai, ZHANG Daomin, 2003: Systematic Errors of Zonal-Mean Flow in Dynamical Monthly Prediction and Its Improvement, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 17-27.  doi: 10.1007/BF03342046
    [20] Dehai LUO, Binhe LUO, Wenqi ZHANG, 2023: A Perspective on the Evolution of Atmospheric Blocking Theories: From Eddy-Mean flow Interaction to Nonlinear Multiscale Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 553-569.  doi: 10.1007/s00376-022-2194-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2005
Manuscript revised: 10 September 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Evaluation of Mid-Depth Currents of NCEP Reanalysis Data in the Tropical Pacific Using ARGO Float Position Information

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Department of Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Department of Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044

Abstract: The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats.The average speed difference between NCEP and ARGO values ranges from about -2.3 cms-1 to -1.8cms-1. The second is that the velocity difference between the ocean model and the observations at 2000dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return