Advanced Search
Article Contents

A Study of the Extratropical Transformation of Typhoon Winnie (1997)


doi: 10.1007/BF02918716

  • The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET)with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone.This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.
  • [1] Lei LIU, Guihua WANG, Ze ZHANG, Huizan WANG, 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1501-1518.  doi: 10.1007/s00376-022-1285-1
    [2] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [3] Fang Juan, Wu Rongsheng, 1998: Frontogenesis, Evolution and the Time Scale of Front Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 233-246.  doi: 10.1007/s00376-998-0042-4
    [4] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [5] Wang Xingbao, Wu Rongsheng, 1999: Interaction of Orographic Disturbance with Front, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 467-481.  doi: 10.1007/s00376-999-0024-1
    [6] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [7] MING Jie, NI Yunqi, SHEN Xinyong, 2009: The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 26, 523-542.  doi: 10.1007/s00376-009-0523-0
    [8] Lin DENG, Wenhua GAO, Yihong DUAN, Yuqing WANG, 2019: Microphysical Properties of Rainwater in Typhoon Usagi (2013): A Numerical Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 510-526.  doi: 10.1007/s00376-019-8170-6
    [9] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2010: An Analysis of Typhoon Chanthu in June 2004 with Focus on the Impact on Thailand, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 14-32.  doi: 10.1007/s00376-009-8206-4
    [10] Shuai YANG, Xiba TANG, Shuixin ZHONG, Bin CHEN, Yushu ZHOU, Shouting GAO, Chengxin WANG, 2019: Convective Bursts Episode of the Rapidly Intensified Typhoon Mujigae (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 36, 541-556.  doi: 10.1007/s00376-019-8142-x
    [11] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [12] Zi-Liang LI, Ping WEN, 2017: Comparison between the Response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 79-87.  doi: 10.1007/s00376-016-6027-9
    [13] Yangmei TIAN, John L. MCBRIDE, Fumin REN, Guoping LI, Tian FENG, 2022: Changes in Typhoon Regional Heavy Precipitation Events over China from 1960 to 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 272-283.  doi: 10.1007/s00376-021-1015-0
    [14] Dongmei XU, Feifei SHEN, Jinzhong MIN, Aiqing SHU, 2021: Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 983-993.  doi: 10.1007/s00376-021-0252-6
    [15] Sung Hyup YOU, Yong Hee LEE, Woo Jeong LEE, 2011: Parameterization and Application of Storm Surge/Tide Modeling Using a Genetic Algorithm for Typhoon Periods, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1067-1076.  doi: 10.1007/s00376-011-0113-9
    [16] REN Xuejuan, William PERRIE, 2006: Air-sea Interaction of Typhoon Sinlaku (2002) Simulated by the Canadian MC2 Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 521-530.  doi: 10.1007/s00376-006-0521-4
    [17] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [18] LIANG Feng, TAO Shiyan, WEI Jie, BUEH Cholaw, 2011: Variation in Summer Rainfall in North China during the Period 1956--2007 and Links with Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 363-374.  doi: 10.1007/s00376-010-9220-2
    [19] LI Weibiao, 2004: Modelling Air-Sea Fluxes during a Western Pacific Typhoon: Role of Sea Spray, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 269-276.  doi: 10.1007/BF02915713
    [20] Hongbin CHEN, Jun LI, Wenying HE, Shuqing MA, Yingzhi WEI, Jidong PAN, Yu ZHAO, Xuefen ZHANG, Shuzhen HU, 2021: IAP’s Solar-Powered Unmanned Surface Vehicle Actively Passes through the Center of typhoon Sinlaku (2020), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 538-545.  doi: 10.1007/s00376-021-1006-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2005
Manuscript revised: 10 September 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Study of the Extratropical Transformation of Typhoon Winnie (1997)

  • 1. Departrnent of Geoscience, Zhejiang University, Hangzhou 310027,Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871,Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871,Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871

Abstract: The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET)with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone.This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return