Advanced Search
Article Contents

Impact of Land Use Changes on Surface Warming in China


doi: 10.1007/BF02918748

  • Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.
  • [1] Buwen DONG, Rowan T. SUTTON, Wei CHEN, Xiaodong LIU, Riyu LU, Ying SUN, 2016: Abrupt Summer Warming and Changes in Temperature Extremes over Northeast Asia Since the Mid-1990s: Drivers and Physical Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1005-1023.  doi: 10.1007/s00376-016-5247-3
    [2] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [3] GAO Xuejie, LUO Yong, LIN Wantao, ZHAO Zongci, Filippo GIORGI, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 583-592.  doi: 10.1007/BF02915501
    [4] Chibuike Chiedozie IBEBUCHI, Cameron C. LEE, 2024: Circulation Pattern Controls of Summer Temperature Anomalies in Southern Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 341-354.  doi: 10.1007/s00376-023-2392-3
    [5] Jintao ZHANG, Qinglong YOU, Fangying WU, Ziyi CAI, Nick PEPIN, 2022: The Warming of the Tibetan Plateau in Response to Transient and Stabilized 2.0°C/1.5°C Global Warming Targets, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1198-1206.  doi: 10.1007/s00376-022-1299-8
    [6] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [7] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [8] Xiaoling YANG, Botao ZHOU, Ying XU, Zhenyu HAN, 2021: CMIP6 Evaluation and Projection of Temperature and Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 817-830.  doi: 10.1007/s00376-021-0351-4
    [9] HU Ruijin, WEI Meng, 2013: Intraseasonal Oscillation in Global Ocean Temperature Inferred from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 29-40.  doi: 10.1007/s00376-012-2045-4
    [10] SONG Lianchun, A. J. CANNON, P. H. WHITFIELD, 2007: Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 459-473.  doi: 10.1007/s00376-007-0459-1
    [11] XU Ying, GAO Xuejie, SHEN Yan, XU Chonghai, SHI Ying, F. GIORGI, 2009: A Daily Temperature Dataset over China and Its Application in Validating a RCM Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 763-772.  doi: 10.1007/s00376-009-9029-z
    [12] BI Yun, CHEN Yuejuan, ZHOU Renjun, YI Mingjian, DENG Shumei, 2011: Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 832-842.  doi: 10.1007/s00376-010-0047-7
    [13] HU Yichang, HE Yong, DONG Wenjie, 2009: Changes in Temperature Extremes Based on a 6-Hourly Dataset in China from 1961--2005, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1215-1225.  doi: 10.1007/s00376-009-8140-5
    [14] ZOU Jianwen, HUANG Yao, ZONG Lianggang, ZHENG Xunhua, WANG Yuesi, 2004: Carbon Dioxide, Methane, and Nitrous Oxide Emissions from a Rice-Wheat Rotation as Affected by Crop Residue Incorporation and Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 691-698.  doi: 10.1007/BF02916366
    [15] Deliang CHEN, Anders OMSTEDT, 2005: Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 655-664.  doi: 10.1007/BF02918709
    [16] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7
    [17] WANG Yuesi, HU Yuqiong, JI Baoming, LIU Guangren, XUE Min, 2003: An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Semiarid Grassland, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 119-127.  doi: 10.1007/BF03342056
    [18] Reshmita NATH, Debashis NATH, Qian LI, Wen CHEN, Xuefeng CUI, 2017: Impact of Drought on Agriculture in the Indo-Gangetic Plain, India, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 335-346.  doi: 10.1007/s00376-016-6102-2
    [19] Imoleayo Ezekiel GBODE, Toju Esther BABALOLA, Gulilat Tefera DIRO, Joseph Daniel INTSIFUL, 2023: Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 570-586.  doi: 10.1007/s00376-022-2161-8
    [20] Jiangbo JIN, Duoying JI, Xiao DONG, Kece FEI, Run GUO, Juanxiong HE, Yi YU, Zhaoyang CHAI, He ZHANG, Dongling ZHANG, Kangjun CHEN, Qingcun ZENG, 2024: CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP), ADVANCES IN ATMOSPHERIC SCIENCES, 41, 989-1000.  doi: 10.1007/s00376-023-3089-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2005
Manuscript revised: 10 May 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impact of Land Use Changes on Surface Warming in China

  • 1. Global Change System for Analysis, Research and Training/Regional Research Center for Temperate East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Atmospheric Sciences Program, School of Earth and Environmental Science,Seoul National University, Seoul 151-747, Korea,National Climate Center, China Meteorological Administration, Beijing 100081,Global Change System for Analysis, Research and Training/Regional Research Center for Temperate East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Atmospheric Sciences Program, School of Earth and Environmental Science,Seoul National University, Seoul 151-747, Korea,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, U. S. A.,Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030,Atmospheric Sciences Program, School of Earth and Environmental Sciences,Seoul National University, Seoul 151-747, Korea

Abstract: Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return