Advanced Search
Article Contents

The Characteristics of Longitudinal Movement of the Subtropical High in the Western Pacific in the Pre-rainy Season in South China


doi: 10.1007/BF02918752

  • Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of theanomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainyseason in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associatedwith the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence theprecipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), theSouth China quasi-stationary front is stronger with more abundant precipitation there. However, whenthe SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. Thereexists a good relationship between the longitudinal position of SHWP and SST in the tropical region. Anegative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean.This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This closerelationship can be found even in the preceding autumn and winter. A positive correlation appears in thewestern and northern Pacific and large correlation coefficient values also occur in the preceding autumnand winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and theSouth China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and easternPacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropicalSSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive)SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.
  • [1] Wu Bingyi, Wang Jia, 2002: Possible Impacts of Winter Arctic Oscillation on Siberian High, the East Asian Winter Monsoon and Sea-Ice Extent, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 297-320.  doi: 10.1007/s00376-002-0024-x
    [2] ZENG Gang, Wei-Chyung WANG, SUN Zhaobo, LI Zhongxian, 2011: Atmospheric Circulation Cells Associated with Anomalous East Asian Winter Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 913-926.  doi: 10.1007/s00376-010-0100-6
    [3] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [4] LI Fei, WANG Huijun, 2013: Relationship between Bering Sea Ice Cover and East Asian Winter Monsoon Year-to-Year Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 48-56.  doi: 10.1007/s00376-012-2071-2
    [5] YANG Hui, 2011: The Significant Relationship between the Arctic Oscillation (AO) in December and the January Climate over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 398-407.  doi: 10.1007/s00376-010-0019-y
    [6] LIU Chengji, REN Xuejuan*, and YANG Xiuqun, 2014: Mean FlowStorm Track Relationship and RossbyWave Breaking in Two Types of El-Nio, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 197-210.  doi: 10.1007/s00376-013-2297-7
    [7] Wen CHEN, Renhe ZHANG, Renguang WU, Zhiping WEN, Liantong ZHOU, Lin WANG, Peng HU, Tianjiao MA, Jinling PIAO, Lei SONG, Zhibiao WANG, Juncong LI, Hainan GONG, Jingliang HUANGFU, Yong LIU, 2023: Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1429-1456.  doi: 10.1007/s00376-023-2266-8
    [8] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [9] Tae-Won PARK, Jee-Hoon JEONG, Chang-Hoi HO, Seong-Joong KIM, 2008: Characteristics of Atmospheric Circulation Associated with Cold Surge Occurrences in East Asia: A Case Study During 2005/06 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 791-804.  doi: 10.1007/s00376-008-0791-0
    [10] YANG Hui, SUN Shuqing, 2003: Longitudinal Displacement of the Subtropical High in the Western Pacific in Summer and its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 921-933.  doi: 10.1007/BF02915515
    [11] Qingwei ZENG, Yun ZHANG, Hengchi LEI, Yanqiong XIE, Taichang GAO, Lifeng ZHANG, Chunming WANG, Yanbin HUANG, 2019: Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1103-1120.  doi: 10.1007/s00376-019-8225-8
    [12] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [13] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [14] CHEN Shangfeng, CHEN Wen, WEI Ke, 2013: Recent Trends in Winter Temperature Extremes in Eastern China and their Relationship with the Arctic Oscillation and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1712-1724.  doi: 10.1007/s00376-013-2296-8
    [15] Wu Renguang, Chen Lieting, 1995: Interannual Fluctuations of Surface Air Temperature over North America and Its Relationship to the North Pacific SST Anomaly, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 20-28.  doi: 10.1007/BF02661284
    [16] Jong-Kil PARK, LU Riyu, LI Chaofan, Eun Byul KIM, 2012: Interannual Variation of Tropical Night Frequency in Beijing and Associated Large-Scale Circulation Background, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 295-306.  doi: 10.1007/s00376-011-1141-1
    [17] Yating ZHAO, Ming XUE, Jing JIANG, Xiao-Ming HU, Anning HUANG, 2024: Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 619-638.  doi: 10.1007/s00376-023-2353-x
    [18] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [19] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [20] YAN Hongming, YANG Hui, YUAN Yuan, LI Chongyin, 2011: Relationship Between East Asian Winter Monsoon and Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1345-1356.  doi: 10.1007/s00376-011-0014-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2005
Manuscript revised: 10 May 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Characteristics of Longitudinal Movement of the Subtropical High in the Western Pacific in the Pre-rainy Season in South China

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of theanomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainyseason in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associatedwith the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence theprecipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), theSouth China quasi-stationary front is stronger with more abundant precipitation there. However, whenthe SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. Thereexists a good relationship between the longitudinal position of SHWP and SST in the tropical region. Anegative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean.This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This closerelationship can be found even in the preceding autumn and winter. A positive correlation appears in thewestern and northern Pacific and large correlation coefficient values also occur in the preceding autumnand winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and theSouth China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and easternPacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropicalSSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive)SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return