Advanced Search
Article Contents

A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon


doi: 10.1007/BF02918757

  • The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai,Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist's original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.
  • [1] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2010: An Analysis of Typhoon Chanthu in June 2004 with Focus on the Impact on Thailand, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 14-32.  doi: 10.1007/s00376-009-8206-4
    [2] Peter G. BAINES, 2006: The Zonal Structure of the Hadley Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 869-883.  doi: 10.1007/s00376-006-0869-5
    [3] HU Yongyun, ZHOU Chen, LIU Jiping, 2011: Observational Evidence for Poleward Expansion of the Hadley Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 33-44.  doi: 10.1007/s00376-010-0032-1
    [4] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [5] ZHOU Botao, WANG Huijun, 2008: Interdecadal Change in the Connection Between Hadley Circulation and Winter Temperature in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 24-30.  doi: 10.1007/s00376-008-0024-6
    [6] Yuan Zhuojian, Wang Tongmei, He Haiyan, Luo Huibang, Guo Yufu, 2000: A Comparison between Numerical Simulations of Forced Local Hadley (Anti-Hadley) Circulation in East Asian and Indian Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 538-554.  doi: 10.1007/s00376-000-0017-6
    [7] Bo SUN, 2018: Asymmetric Variations in the Tropical Ascending Branches of Hadley Circulations and the Associated Mechanisms and Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 317-333.  doi: 10.1007/s00376-017-7089-z
    [8] Botao ZHOU, Ying SHI, Ying XU, 2016: CMIP5 Simulated Change in the Intensity of the Hadley and Walker Circulations from the Perspective of Velocity Potential, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 808-818.  doi: 10.1007/s00376-016-5216-x
    [9] Iman ROUSTA, Mehdi DOOSTKAMIAN, Esmaeil HAGHIGHI, Hamid Reza GHAFARIAN MALAMIRI, Parvane YARAHMADI, 2017: Analysis of Spatial Autocorrelation Patterns of Heavy and Super-Heavy Rainfall in Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1069-1081.  doi: 10.1007/s00376-017-6227-y
    [10] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [11] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [12] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [13] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [14] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [15] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [16] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [17] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7
    [18] DONG Haiping, ZHAO Sixiong, ZENG Qingcun, 2007: A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 485-502.  doi: 10.1007/s00376-007-0485-z
    [19] A.K.Kulkarmi, B.N.Mandal, R.S.Sangam, 1994: A Study of Heavy Rainfall of 8-10 June, 1991 over Maharashtra, India, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 353-366.  doi: 10.1007/BF02658155
    [20] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2005
Manuscript revised: 10 May 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon

  • 1. Department of Mathematics, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand;Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Graduate School of Chinese Academy of Sciences, Beijing 100039,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai,Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist's original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return