Advanced Search

Volume 7 Issue 1

Jan.  1990

Article Contents

Relationship between the Interannual Variations of Total Ozone in the Northern Hemisphere and the QBO of Basic Flow in the Tropical Stratosphere


doi: 10.1007/BF02919167

  • The harmonic analyses of monthly mean total ozone in the atmosphere over the Northern Hemisphere for 26 years (1960-1985) are made by using the Fourier expansion. The analysed results show that there is obviously a quasi-biennial oscillation (QBO) in the interannual variations of the amplitudes of total ozone. Generally, the amplitudes of wavenumber 1 and 2 during the westerly of the equatorial QBO are larger than those during the easter-ly. In the early winter, the amplitude of wavenumber 1 during the easterly phase is larger, and in the late winter, it is larger during the westerly phase. These are in good agreement with the observational distributions.
  • [1] Zou Han, Ji Chongping, Zhou Libo, 2000: QBO Signal in Total Ozone over Tibet, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 562-568.  doi: 10.1007/s00376-000-0019-4
    [2] CHEN Wen, WEI Ke, 2009: Interannual Variability of the Winter Stratospheric Polar Vortex in the Northern Hemisphere and their Relations to QBO and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 855-863.  doi: 10.1007/s00376-009-8168-6
    [3] CHEN Yuejuan, SHI Chunhua, ZHENG Bin, 2005: HCl Quasi-Biennial Oscillation in the Stratosphere and a Comparison with Ozone QBO, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 751-758.  doi: 10.1007/BF02918718
    [4] GONG Daoyi, Helge DRANGE, 2005: A Preliminary Study on the Relationship Between Arctic Oscillation and Daily SLP Variance in the Northern Hemisphere During Wintertime, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 313-327.  doi: 10.1007/BF02918745
    [5] Laura DE LA TORRE, Luis GIMENO, Juan Antonio A\~NEL, Raquel NIETO, 2007: The Role of the Solar Cycle in the Relationship Between the North Atlantic Oscillation and Northern Hemisphere Surface Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 191-198.  doi: 10.1007/s00376-007-0191-x
    [6] WANG Huijun, 2006: Linkage Between the Northeast Mongolian Precipitation and the Northern Hemisphere Zonal Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 659-664.  doi: 10.1007/s00376-006-0659-0
    [7] WEI Ke, CHEN Wen, HUANG Ronghui, 2006: Long-Term Changes of the Ultraviolet Radiation in China and its Relationship with Total Ozone and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 700-710.  doi: 10.1007/s00376-006-0700-3
    [8] HUANG Gang, LIU Yong, HUANG Ronghui, 2011: The Interannual Variability of Summer Rainfall in the Arid and Semiarid Regions of Northern China and Its Association with the Northern Hemisphere Circumglobal Teleconnection, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 257-268.  doi: 10.1007/s00376-010-9225-x
    [9] Renguang WU, 2017: Relationship between Indian and East Asian Summer Rainfall Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 4-15.  doi: 10.1007/s00376-016-6216-6
    [10] ZHU Yali, WANG Huijun, 2010: The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 177-184.  doi: 10.1007/s00376-009-8144-1
    [11] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6
    [12] Tianju WANG, Zhong ZHONG, Ju WANG, 2018: Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 531-539.  doi: 10.1007/s00376-017-7126-y
    [13] Minghao YANG, Chongyin LI, Xin LI, Xiong CHEN, Lifeng LI, 2022: The Linkage between Midwinter Suppression of the North Pacific Storm Track and Atmospheric Circulation Features in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 502-518.  doi: 10.1007/s00376-021-1145-4
    [14] Hu Zengzhen, Tsuyoshi Nitta, 1997: Seasonality of the Interaction between Convection over the Western Pacific and General Circulation in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 541-553.  doi: 10.1007/s00376-997-0072-3
    [15] Shi Neng, Zhu Qiangen, 1993: Studies on the Northern Early Summer Teleconnection Patterns, Their Interannual Variations and Relation to Drought / Flood in China, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 155-168.  doi: 10.1007/BF02919138
    [16] Gao Dengyi, Sadao Kawagochi, 1986: RELATIONSHIP BETWEEN THE INCREASE TEMPERATURE AND VARIATION OF OZONE LEVEL OVER THE ANTARCTICA AND TIBETAN PLATEAU IN SPRING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 489-498.  doi: 10.1007/BF02657938
    [17] Venkat NR. Mukku, 1990: The Ozone, Aerosol Depletion and Condensation Nuclei Events in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 192-196.  doi: 10.1007/BF02919157
    [18] LI Fei, WANG Huijun, 2013: Relationship between Bering Sea Ice Cover and East Asian Winter Monsoon Year-to-Year Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 48-56.  doi: 10.1007/s00376-012-2071-2
    [19] Zou Han, Ji Chongping, Zhou Libo, Wang Wei, Jian Yongxiao, 2001: ENSO Signal in Total Ozone over Tibet, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 231-238.  doi: 10.1007/s00376-001-0016-2
    [20] Wang Panxing, Liu Dai, Pan Deyu, 1987: WAVE BOUNDARY BETWEEN MIDDLE-AND-LOW AND MIDDLE-AND-HIGH LATITUDE CIRCULATIONS, AND SEASONAL TRANSFORMATION OF NORTHERN-HEMISPHERE MEAN CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 55-65.  doi: 10.1007/BF02656661

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1990
Manuscript revised: 10 January 1990
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Relationship between the Interannual Variations of Total Ozone in the Northern Hemisphere and the QBO of Basic Flow in the Tropical Stratosphere

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing 100080,Institute of Atmospheric Physics, Academia Sinica, Beijing 100080

Abstract: The harmonic analyses of monthly mean total ozone in the atmosphere over the Northern Hemisphere for 26 years (1960-1985) are made by using the Fourier expansion. The analysed results show that there is obviously a quasi-biennial oscillation (QBO) in the interannual variations of the amplitudes of total ozone. Generally, the amplitudes of wavenumber 1 and 2 during the westerly of the equatorial QBO are larger than those during the easter-ly. In the early winter, the amplitude of wavenumber 1 during the easterly phase is larger, and in the late winter, it is larger during the westerly phase. These are in good agreement with the observational distributions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return