Advanced Search

Volume 7 Issue 1

Jan.  1990

Article Contents

Dynamical Framework of IAP Nine-Level Atmospheric General Circulation Model


doi: 10.1007/BF02919169

  • The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model’s description is put on the following two aspects:1) A model’s standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calcula-tion of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully se-lected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error in-volved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments, The two waves have been inte-grated for more than 300 days and 100 days respectively by using the model and both of them are propagating west-ward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model’s troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days respectively. The explanation of this interesting phenomena is still under investigation.
  • [1] Liang Xinzhong, 1996: Description of A Nine-Level Grid Point Atmospheric General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 269-298.  doi: 10.1007/BF02656847
    [2] Chineke Theo Chidiezie, Bi Xunqiang, Wang Huijun, Xue Feng, 1997: The African Climate as Predicted by the IAP Grid-Point Nine-Layer Atmospheric General Circulation Model (IAP-9L-AGCM), ADVANCES IN ATMOSPHERIC SCIENCES, 14, 409-416.  doi: 10.1007/s00376-997-0060-7
    [3] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024
    [4] Jin Xiangze, Zhang Xuehong, Zhou Tianjun, 1999: Fundamental Framework and Experiments of the Third Generation of IAP/ LASG World Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 197-215.  doi: 10.1007/BF02973082
    [5] Wang Huijun, 1992: The Seasonal Climatic Simulation of 9000 Years before Present by Using the IAP Atmospheric General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 451-457.  doi: 10.1007/BF02677077
    [6] Zhang Xin, Wang Bin, Ji Zhongzhen, 2001: Performance of a Parallel Finite Difference Atmospheric General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1175-1184.  doi: 10.1007/s00376-001-0031-3
    [7] WEN Xinyu, ZHOU Tianjun, WANG Shaowu, WANG Bin, WAN Hui, LI Jian, 2007: Performance of a Reconfigured Atmospheric General Circulation Model at Low Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 712-728.  doi: 10.1007/s00376-007-0712-7
    [8] LI Jiandong, Zhian SUN, LIU Yimin, Jiangnan LI, Wei-Chyung WANG, WU Guoxiong, 2012: A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1185-1199.  doi: 10.1007/s00376-012-1257-y
    [9] Chineke Theo Chidiezie, Li Weiping, 1999: IAP General Circulation Models: A First Step Towards Developing a Local Area Model for Weather Prediction in Nigeria, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 119-132.  doi: 10.1007/s00376-999-0008-1
    [10] Wang Weiguo, Xie Yingqi, Qiu Jinhuan, Liu Qing, 1998: The Regional Dynamical Model of the Atmospheric Ozonosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 74-82.  doi: 10.1007/s00376-998-0019-3
    [11] YU Yongqiang, ZHANG Xuehong, GUO Yufu, 2004: Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 444-455.  doi: 10.1007/BF02915571
    [12] S. PANCHEV, T. SPASSOVA, 2005: Simple General Atmospheric Circulation and Climate Models with Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 765-769.  doi: 10.1007/BF02918720
    [13] Huang Ruixin, Jin Xiangze, Zhang Xuehong, 2001: An Oceanic General Circulation Model in Pressure Coordinates, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1-22.  doi: 10.1007/s00376-001-0001-9
    [14] Zhang Xuehong, Liang Xinzhong, 1989: A Numerical World Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 44-61.  doi: 10.1007/BF02656917
    [15] Ni Yunqi, Bette L. Otto-Bliesner, David D. Houghton, 1987: THE SENSITIVITY OF NUMERICAL SIMULATION TO OROGRAPHY SPECIFICATION IN THE LOW RESOLUTION SPECTRAL MODEL-PART I: THE EFFECTS OF OROGRAPHY ON THE ATMOSPHERIC GENERAL CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 1-12.  doi: 10.1007/BF02663607
    [16] REN Rongcai, WU Guoxiong, Ming CAI, YU Jingjing, 2009: Winter Season Stratospheric Circulation in the SAMIL/LASG General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 451-464.  doi: 10.1007/s00376-009-0451-z
    [17] Zhou Guangqing, Zeng Qingcun, 2001: Predictions of ENSO with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 587-603.  doi: 10.1007/s00376-001-0047-8
    [18] XU Yongfu, LI Yangchun, and CHU Min, 2013: A Global Ocean Biogeochemistry General Circulation Model and its Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 922-939.  doi: 10.1007/s00376-012-2162-0
    [19] Yu Yongqiang, Yu Rucong, Zhang Xuehong, Liu Hailong, 2002: A Flexible Coupled Ocean-Atmosphere General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 169-190.  doi: 10.1007/s00376-002-0042-8
    [20] LIU Hailong, ZHANG Xuehong, LI Wei, YU Yongqiang, YU Rucong, 2004: An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 675-690.  doi: 10.1007/BF02916365

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1990
Manuscript revised: 10 January 1990
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Dynamical Framework of IAP Nine-Level Atmospheric General Circulation Model

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing 100080

Abstract: The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model’s description is put on the following two aspects:1) A model’s standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calcula-tion of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully se-lected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error in-volved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments, The two waves have been inte-grated for more than 300 days and 100 days respectively by using the model and both of them are propagating west-ward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model’s troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days respectively. The explanation of this interesting phenomena is still under investigation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return