Advanced Search

Volume 8 Issue 4

Oct.  1991

Article Contents

A Numerical Study of the Mechanism for the Effect of Northern Winter Arctic Ice Cover on the Global Short-Range Climate Evolution


doi: 10.1007/BF02919271

  • By using a nine-layer global spectral model involving fuller parameterization of physical processes, with a rhomboidal truncation at wavenumber 15, experiments are performed in terms of two numerical schemes, one with long-term mean coverage of Arctic ice (Exp.1), the other without the ice (Exp.2). Results indicate that the Arctic re-gion is a heat source in Exp.2 relative to the case in Exp.1. Under the influence of the polar heat source simulated, there still exist stationary wavetrains that produce WA-EUP and weak PNA patterns in Northern winter. That either the Arctic or the tropical heat source can cause identical climatic effects is due to the fact that the anomaly of the Arc-tic ice cover will directly induce a south-propagating wavetrain, and bring about the redistribution of the tropical heat source/ sink. The redistribution is responsible for new wavetrains that will exert impact on the global climate. The simulation results bear out further that the polar region in Exp.2 as a heat source, can produce, by local forcing, a pair of positive and negative difference centers, which circle the Arctic moving eastwards. Observed in the Northern Hemisphere extratropics is a 40-50 day oscillation in relation to the moving pair, both having the same period.
  • [1] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [2] Jiaqi Zheng, Qing Ling, Jia Li, Yerong Feng, 2023: Improving Short-Range Precipitation Forecast of Numerical Weather Prediction Through a Deep Learning-Based Mask Approach, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3085-7
    [3] Liu Jianwen, Dong Peiming, 2001: Short-range Climate Prediction Experiment of the Southern Oscillation Index Based on the Singular Spectrum Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 873-881.
    [4] Jiangshan ZHU, Fanyou KONG, Xiao-Ming HU, Yan GUO, Lingkun RAN, Hengchi LEI, 2018: Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 839-852.  doi: 10.1007/s00376-017-7107-1
    [5] CHEN Guanghua, 2013: A Numerical Study on the Effect of an Extratropical Cyclone on the Evolution of a Midlatitude Front, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1433-1448.  doi: 10.1007/s00376-012-2191-8
    [6] Xiaohao QIN, Wansuo DUAN, Hui XU, 2020: Sensitivity to Tendency Perturbations of Tropical Cyclone Short-range Intensity Forecasts Generated by WRF, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 291-306.  doi: 10.1007/s00376-019-9187-6
    [7] Jin FENG, Min CHEN, Yanjie LI, Jiqin ZHONG, 2021: An Implementation of Full Cycle Strategy Using Dynamic Blending for Rapid Refresh Short-range Weather Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 943-956.  doi: 10.1007/s00376-021-0316-7
    [8] FENG Yerong, David H. KITZMILLER, 2006: A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 405-414.  doi: 10.1007/s00376-006-0405-7
    [9] Hoffman H. N. CHEUNG, Noel KEENLYSIDE, Nour-Eddine OMRANI, Wen ZHOU, 2018: Remarkable Link between Projected Uncertainties of Arctic Sea-Ice Decline and Winter Eurasian Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 38-51.  doi: 10.1007/s00376-017-7156-5
    [10] Ni Yunqi, Lin Wuyin, Wang Wanqiu, Yuan Chongguang, Zhang Qin, 1993: Numerical Study for Potential Predictability of Short-Term Anomalous Climate Change Caused by El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 1-10.  doi: 10.1007/BF02656949
    [11] Fei ZHENG, Yue SUN, Qinghua YANG, Longjiang MU, 2021: Evaluation of Arctic Sea-ice Cover and Thickness Simulated by MITgcm, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 29-48.  doi: 10.1007/s00376-020-9223-6
    [12] Shingo Yamada, Shuhei Maeda, K. Gambo, 1997: Notes on Extended-Range Atmospheric Prediction in the Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 23-40.  doi: 10.1007/s00376-997-0040-y
    [13] GAO Yongqi, SUN Jianqi, LI Fei, HE Shengping, Stein SANDVEN, YAN Qing, ZHANG Zhongshi, Katja LOHMANN, Noel KEENLYSIDE, Tore FUREVIK, SUO Lingling, 2015: Arctic Sea Ice and Eurasian Climate: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 92-114.  doi: 10.1007/s00376-014-0009-6
    [14] Odd Helge OTTER, Helge DRANGE, 2004: A Possible Feedback Mechanism Involving the Arctic Freshwater,the Arctic Sea Ice, and the North Atlantic Drift, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 784-801.  doi: 10.1007/BF02916375
    [15] Zhuozhuo Lü, Shengping HE, Fei LI, Huijun WANG, 2019: Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 173-188.  doi: 10.1007/s00376-017-8089-8
    [16] Chunxiang LI, Guokun DAI, Mu MU, Zhe HAN, Xueying MA, Zhina JIANG, Jiayu ZHENG, Mengbin ZHU, 2023: Influence of Arctic Sea-ice Concentration on Extended-range Forecasting of Cold Events in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2224-2241.  doi: 10.1007/s00376-023-3010-0
    [17] Qian YANG, Shichang KANG, Haipeng YU, Yaoxian YANG, 2023: Impact of the Shrinkage of Arctic Sea Ice on Eurasian Snow Cover Changes in 1979–2021, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2183-2194.  doi: 10.1007/s00376-023-2272-x
    [18] Chen Wen, Huang Ronghui, 2002: The Propagation and Transport Effect of Planetary Waves in the Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1113-1126.  doi: 10.1007/s00376-002-0069-x
    [19] Xu Jianjun, 1994: Statistical Regression Analysis of Response of Northern Mid and Upper Tropospheric Circulation to Winter Eurasian Snow Cover Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 415-420.  doi: 10.1007/BF02658161
    [20] LI Fei, WANG Huijun, 2013: Relationship between Bering Sea Ice Cover and East Asian Winter Monsoon Year-to-Year Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 48-56.  doi: 10.1007/s00376-012-2071-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1991
Manuscript revised: 10 October 1991
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Numerical Study of the Mechanism for the Effect of Northern Winter Arctic Ice Cover on the Global Short-Range Climate Evolution

  • 1. Department of Atmospheric Sciences, Nanjing University,Department of Meteorology, Nanjing Institute of Meteorology,Department of Atmospheric Sciences, Nanjing University

Abstract: By using a nine-layer global spectral model involving fuller parameterization of physical processes, with a rhomboidal truncation at wavenumber 15, experiments are performed in terms of two numerical schemes, one with long-term mean coverage of Arctic ice (Exp.1), the other without the ice (Exp.2). Results indicate that the Arctic re-gion is a heat source in Exp.2 relative to the case in Exp.1. Under the influence of the polar heat source simulated, there still exist stationary wavetrains that produce WA-EUP and weak PNA patterns in Northern winter. That either the Arctic or the tropical heat source can cause identical climatic effects is due to the fact that the anomaly of the Arc-tic ice cover will directly induce a south-propagating wavetrain, and bring about the redistribution of the tropical heat source/ sink. The redistribution is responsible for new wavetrains that will exert impact on the global climate. The simulation results bear out further that the polar region in Exp.2 as a heat source, can produce, by local forcing, a pair of positive and negative difference centers, which circle the Arctic moving eastwards. Observed in the Northern Hemisphere extratropics is a 40-50 day oscillation in relation to the moving pair, both having the same period.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return