Advanced Search
Article Contents

Finite-Time Normal Mode Disturbances and Error Growth During Southern Hemisphere Blocking


doi: 10.1007/BF02930871

  • The structural organization of initially random errors evolving in a barotropic tangent linear model, with time-dependent basic states taken from analyses, is examined for cases of block development, maturation and decay in the Southern Hemisphere atmosphere during April, November, and December 1989. The statistics of 100 evolved errors are studied for six-day periods and compared with the growth and structures of fast growing normal modes and finite-time normal modes (FTNMs). The amplification factors of most initially random errors are slightly less than those of the fastest growing FTNM for the same time interval.During their evolution, the standard deviations of the error fields become concentrated in the regions of rapid dynamical development, particularly associated with developing and decaying blocks. We have calculated probability distributions and the mean and standard deviations of pattern correlations between each of the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. The mean of the largest pattern correlation, taken over the five fastest growing FTNMs, increases with increasing time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but not always, gives the largest mean pattern correlation with error fields. Corresponding pattern correlations with the fast growing normal modes of the instantaneous basic state flow are significant but lower than with FTNMs.Mean pattern correlations with fast growing FTNMs increase further when the time interval is increased beyond six days.
  • [1] Debashis NATH, CHEN Wen, WANG Lin, and MA Yin, 2014: Planetary Wave Reflection and Its Impact on Tropospheric Cold Weather over Asia during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 851-862.  doi: 10.1007/s00376-013-3195-8
    [2] Debashis NATH, Wen CHEN, 2016: Impact of Planetary Wave Reflection on Tropospheric Blocking over the Urals-Siberia Region in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 309-318.  doi: 10.1007/s00376-015-5052-4
    [3] Dorina CHYI, Zuowei XIE, Ning SHI, Pinwen GUO, Huijun WANG, 2020: Wave-Breaking Features of Blocking over Central Siberia and Its Impacts on the Precipitation Trend over Southeastern Lake Baikal, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 75-89.  doi: 10.1007/s00376-019-9048-3
    [4] Yao YAO, Dehai LUO, 2018: An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 796-812.  doi: 10.1007/s00376-017-7128-9
    [5] Luo Dehai, Li Jianping, Huang Fei, 2002: Life Cycles of Blocking Flows Associated with Synoptic-Scale Eddies: Observed Results and Numerical Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 594-618.  doi: 10.1007/s00376-002-0003-2
    [6] Cholaw BUEH, Jingbei PENG, Dawei LIN, Bomin CHEN, 2022: On the Two Successive Supercold Waves Straddling the End of 2020 and the Beginning of 2021, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 591-608.  doi: 10.1007/s00376-021-1107-x
    [7] DIAO Yina, FENG Guolin, LIU Shida, LIU Shikuo, LUO Dehai, HUANG Sixun, LU Weisong, CHOU Jifan, 2004: Review of the Study of Nonlinear Atmospheric Dynamics in China (1999-2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 399-406.  doi: 10.1007/BF02915567
    [8] DING Ruiqiang, FENG Guolin, LIU Shida, LIU Shikuo, HUANG Sixun, FU Zuntao, 2007: Nonlinear Atmospheric and Climate Dynamics in China (2003--2006): A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1077-1085.  doi: 10.1007/s00376-007-1077-7
    [9] HAN Zhe, LI Shuanglin, MU Mu, 2011: The Role of Warm North Atlantic SST in the Formation of Positive Height Anomalies over the Ural Mountains during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 246-256.  doi: 10.1007/s00376-010-0069-1
    [10] Luo Dehai, Li Jianping, 2000: Barotropic Interaction between Planetary- and Synoptic-Scale Waves during the Life Cycles of Blockings, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 649-670.  doi: 10.1007/s00376-000-0026-5
    [11] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9
    [12] SONG Fengfei, ZHOU Tianjun, and WANG Lu, 2013: Two Modes of the Silk Road Pattern and Their Interannual Variability Simulated by LASG/IAP AGCM SAMIL2.0, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 908-921.  doi: 10.1007/s00376-012-2145-1
    [13] ZHI Hai, ZHANG Rong-Hua, LIN Pengfei, WANG Lanning, 2015: Simulation of Salinity Variability and the Related Freshwater Flux Forcing in the Tropical Pacific: An Evaluation Using the Beijing Normal University Earth System Model (BNU-ESM), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1551-1564.  doi: 10.1007/s00376-015-4240-6
    [14] Li Chongyin, Liao Qinghai, 1996: Behaviour of Coupled Modes in a Simple Nonlinear Air-Sea Interaction Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 183-195.  doi: 10.1007/BF02656861
    [15] CAO Jian, Bin WANG, Baoqiang XIANG, Juan LI, WU Tianjie, Xiouhua FU, WU Liguang, MIN Jinzhong, 2015: Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model (NESM), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 585-600.  doi: 10.1007/s00376-014-4200-6
    [16] LUO Dehai, YAO Yao, 2014: On the Blocking Flow Patterns in the Euro-Atlantic Sector: A Simple Model Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1181-1196.  doi: 10.1007/s00376-014-3197-1
    [17] Jie SONG, 2024: The Persistence and Zonal Scale of Atmospheric Dipolar Modes, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 478-492.  doi: 10.1007/s00376-023-3023-8
    [18] Ren Shuzhan, 1994: Symmetric Stability of Rotation and Boussinesq Fluid in Bounded Domain by Using Normal Mode Method, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 291-295.  doi: 10.1007/BF02658148
    [19] C. V. Singh, 1998: Relationships between Rainy Days, Mean Daily Intensity and Seasonal Rainfall in Normal, Flood and Drought Years over India, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 424-432.  doi: 10.1007/s00376-998-0012-x
    [20] LI Gang, LI Chongyin, TAN Yanke, BAI Tao, 2012: Seasonal Evolution of Dominant Modes in South Pacific SST and Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1238-1248.  doi: 10.1007/s00376-012-1191-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2005
Manuscript revised: 10 January 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Finite-Time Normal Mode Disturbances and Error Growth During Southern Hemisphere Blocking

  • 1. CSIRO Atmospheric Research, Aspendale, Victoria 3195, Australia,CSIRO Atmospheric Research, Aspendale, Victoria 3195, Australia

Abstract: The structural organization of initially random errors evolving in a barotropic tangent linear model, with time-dependent basic states taken from analyses, is examined for cases of block development, maturation and decay in the Southern Hemisphere atmosphere during April, November, and December 1989. The statistics of 100 evolved errors are studied for six-day periods and compared with the growth and structures of fast growing normal modes and finite-time normal modes (FTNMs). The amplification factors of most initially random errors are slightly less than those of the fastest growing FTNM for the same time interval.During their evolution, the standard deviations of the error fields become concentrated in the regions of rapid dynamical development, particularly associated with developing and decaying blocks. We have calculated probability distributions and the mean and standard deviations of pattern correlations between each of the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. The mean of the largest pattern correlation, taken over the five fastest growing FTNMs, increases with increasing time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but not always, gives the largest mean pattern correlation with error fields. Corresponding pattern correlations with the fast growing normal modes of the instantaneous basic state flow are significant but lower than with FTNMs.Mean pattern correlations with fast growing FTNMs increase further when the time interval is increased beyond six days.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return