Advanced Search
Article Contents

Simplification of Potential Vorcticity and Mesoscale Quasi-balanced Dynamics Model


doi: 10.1007/BF02973090

  • The physical characteristics of mesoscale are analyzed, and results show that the unbalanced forced motion is the fundamental cause, which leads to the evolution of some important mesoscale weather systems. In this paper, an alternative asymptotic expansion method, which is quite differ-ent from the conventional Rossby-number expansion, is used to simplify the potential vorticity equation. And the quasi-balanced (QB) model based on nonlinear balance equation is derived. The QB model, which is in analogy with the quasi –geostrophic model, can describe the fundamen-tal characteristics of the mesoscale accurately and may be used as the basis of theoretical studies on the mesoscale atmospheric dynamics.
  • [1] Daeun JEONG, Ki-Hong MIN, Gyuwon LEE, and Kyung-Eak KIM, 2014: A Case Study of Mesoscale Convective Band (MCB) Development and Evolution along a Quasi-stationary Front, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 901-915.  doi: 10.1007/s00376-013-3089-9
    [2] PAN Yang, YU Rucong, LI Jian, XU Youping, 2008: A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 563-576.  doi: 10.1007/s00376-008-0563-x
    [3] Xiuping YAO, Qin ZHANG, Xiao ZHANG, 2020: Potential Vorticity Diagnostic Analysis on the Impact of the Easterlies Vortex on the Short-term Movement of the Subtropical Anticyclone over the Western Pacific in the Mei-yu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1019-1031.  doi: 10.1007/s00376-020-9271-y
    [4] GAO Shouting, XU Pengcheng, LI Na, 2012: On the Generalized Ertel--Rossby Invariant, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 690-694.  doi: 10.1007/s00376-012-1145-5
    [5] YU Zifeng, LIANG Xudong, YU Hui, Johnny C. L. CHAN, 2010: Mesoscale Vortex Generation and Merging Process: A Case Study Associated with a Post-Landfall Tropical Depression, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 356-370.  doi: 10.1007/s00376-009-8091-x
    [6] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [7] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [8] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [9] Zuohao CAO, Da-Lin ZHANG, 2004: Tracking Surface Cyclones with Moist Potential Vorticity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 830-835.  doi: 10.1007/BF02916379
    [10] Chanh Q. KIEU, Da-Lin ZHANG, 2012: Is the Isentropic Surface Always Impermeable to the Potential Vorticity Substance?, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 29-35.  doi: 10.1007/s00376-011-0227-0
    [11] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6
    [12] Zuohao CAO, Da-Lin ZHANG, 2005: Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 807-820.  doi: 10.1007/BF02918681
    [13] Olivia MARTIUS, Cornelia SCHWIERZ, Michael SPRENGER, 2008: Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere ---A Climatological Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 367-380.  doi: 10.1007/s00376-008-0367-z
    [14] Zuohao Cao, G.W.K. Moore, 1998: A Diagnostic Study of Moist Potential Vorticity Generation in an Extratropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 152-166.  doi: 10.1007/s00376-998-0036-2
    [15] Wu Rongsheng, Fang Juan, 2001: Mechanism of Balanced Flow and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 323-334.  doi: 10.1007/BF02919313
    [16] WANG Qiwei, TAN Zhemin, 2009: Idealized Numerical Simulation Study of the Potential Vorticity Banners over a Mesoscale Mountain: Dry Adiabatic Process, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 906-922.  doi: 10.1007/s00376-009-8004-z
    [17] Chen SHENG, Bian HE, Guoxiong WU, Yimin LIU, Shaoyu ZHANG, 2022: Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1050-1061.  doi: 10.1007/s00376-021-1218-4
    [18] GAO Shouting, ZHOU Yushu, CUI Xiaopeng, DAI Guoping, 2004: Impacts of Cloud-Induced Mass Forcing on the Development of Moist Potential Vorticity Anomaly During Torrential Rains, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 923-927.  doi: 10.1007/BF02915594
    [19] Yao YAO, Wenqin ZHUO, Zhaohui GONG, Binhe LUO, Dehai LUO, Fei ZHENG, Linhao ZHONG, Fei HUANG, Shuangmei MA, Congwen ZHU, Tianjun ZHOU, 2023: Extreme Cold Events in North America and Eurasia in November−December 2022: A Potential Vorticity Gradient Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 953-962.  doi: 10.1007/s00376-023-2384-3
    [20] ZHAO Bingke, WU Guoxiong, YAO Xiuping, 2007: Potential Vorticity Structure and Inversion of the Cyclogenesis Over the Yangtze River and Huaihe River Valleys, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 44-54.  doi: 10.1007/s00376-007-0044-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1999
Manuscript revised: 10 April 1999
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Simplification of Potential Vorcticity and Mesoscale Quasi-balanced Dynamics Model

  • 1. Department of Ceophysics,Peking University,Beijing 100871,Department of Ceophysics,Peking University,Beijing 100871

Abstract: The physical characteristics of mesoscale are analyzed, and results show that the unbalanced forced motion is the fundamental cause, which leads to the evolution of some important mesoscale weather systems. In this paper, an alternative asymptotic expansion method, which is quite differ-ent from the conventional Rossby-number expansion, is used to simplify the potential vorticity equation. And the quasi-balanced (QB) model based on nonlinear balance equation is derived. The QB model, which is in analogy with the quasi –geostrophic model, can describe the fundamen-tal characteristics of the mesoscale accurately and may be used as the basis of theoretical studies on the mesoscale atmospheric dynamics.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return