Advanced Search

Volume 2 Issue 2

Apr.  1985

Article Contents

EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE


doi: 10.1007/BF03179754

  • Using the turbulent statistical form of the vertical vortex diffusion coefficient K, in the planetary boundary layer (PBL) and Ekman spiral wind profile, the three-dimensional diffusion equation is solved by the numeri-cal method. The influences of vertical shear of both wind direction and wind speed on pollution trajectory and horizontal diffusion parameters σy are numerically analysed. The expressions of both pollution trajectory and σy, including the factor of wind shear, are obtained. The results show that the vertical shear of wind is important among all factors affecting the mesoscale dispersion. Specifically, from neutral to stable atmospheric conditions, vertical shear of wind makes greater contribution to σy than turbulence, thus it is the most important factor. In this paper, we have compared horizontal dispersion pattern with both Pasquill's dispersion pattern considering wind direction shear, and experimental data collected at 9 different sites rang-ing from 10 to 100 km, and the results show that our dispersion pattern is closer to the experimental values than Pasquill's results, and his correction to shear of wind direction is too large under the stable conditions.
  • [1] Hongxiong XU, Dajun ZHAO, 2021: Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1889-1904.  doi: 10.1007/s00376-021-1016-z
    [2] Hongxiong Xu, Dajun Zhao, 2023: Effect of the vertical diffusion of moisture in the planetary boundary layer on an idealized tropical cyclone, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 
    [3] MIAO Shiguang, LI Pingyang, WANG Xiaoyun, 2009: Building Morphological Characteristics and Their Effect on the Wind in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1115-1124.  doi: 10.1007/s00376-009-7223-7
    [4] ZHOU Yushu, 2013: Effects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efficiency during a Torrential Rainfall Event in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1809-1820.  doi: 10.1007/s00376-013-3007-1
    [5] YU Jinhua, TAN Zhemin, Yuqing WANG, 2010: Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 552-561.  doi: 10.1007/s00376-009-9030-6
    [6] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [7] Wen Jingsong, Wang Yongguang, 1995: The Effect of Weak Shear-induced Motion on Brownian Coagulation of Aerosol Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 187-194.  doi: 10.1007/BF02656831
    [8] Lei Xiao’en, Qian Minwei, 1987: A PUFF MODEL REVISED BY MONTE-CARLO METHOD ON MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 460-470.  doi: 10.1007/BF02656745
    [9] Federico OTERO, Diego C. ARANEO, 2022: Forecasting Zonda Wind Occurrence with Vertical Sounding Data, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 161-177.  doi: 10.1007/s00376-021-1007-0
    [10] LI Yan, ZHU Jiang, WANG Hui, 2013: The Impact of Different Vertical Diffusion Schemes in a Three-Dimensional Oil Spill Model in the Bohai Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1569-1586.  doi: 10.1007/s00376-012-2201-x
    [11] Qi GAO, Qingqing LI, Yufan DAI, 2020: Characteristics of the Outer Rainband Stratiform Sector in Numerically Simulated Tropical Cyclones: Lower-Layer Shear versus Upper-Layer Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 399-419.  doi: 10.1007/s00376-020-9202-y
    [12] Ding Yihui, Liu Yuezhen, 1987: THE EFFECT OF VERTICAL TRANSPORTS OF HEAT AND MOISTURE BY CUMULUS CONVECTION IN TYPHOON, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 278-286.  doi: 10.1007/BF02663598
    [13] Tian Yongxiang, Luo Zhexian, 1994: Vertical Structure of Beta Gyres and Its Effect on Tropical Cyclone Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 43-50.  doi: 10.1007/BF02656992
    [14] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [15] Seung-Jae LEE, E. Hugo BERBERY, Domingo ALCARAZ-SEGURA, 2013: Effect of Implementing Ecosystem Functional Type Data in a Mesoscale Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1373-1386.  doi: 10.1007/s00376-012-2143-3
    [16] Jia Xinyuan, 1997: The Effect of Mesoscale Flows on Regional Atmospheric Transport in a Complex Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 535-540.  doi: 10.1007/s00376-997-0071-4
    [17] Ni Yunqi, Zhang Qin, Li Yuedong, 1991: A Numerical Study of the Mechanism for the Effect of Northern Winter Arctic Ice Cover on the Global Short-Range Climate Evolution, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 489-498.  doi: 10.1007/BF02919271
    [18] Yonghong LIU, Bing DANG, Yongming XU, Fuzhong WENG, 2021: An Observational Study on the Local Climate Effect of the Shangyi Wind Farm in Hebei Province, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1905-1919.  doi: 10.1007/s00376-021-0290-0
    [19] Lu Longhua, Chen Xianji, Zhu Fukang, 1985: THE INTERANNUAL VARIATION OF MEDIUM-RANGE OSCILLATION CHARACTERISTICS IN THE UPPER TROPOSPHERE OVER THE SUBTROPICAL REGION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 54-62.  doi: 10.1007/BF03179737
    [20] CHEN Longxun, ZHU Wenqin, ZHOU Xiuji, ZHOU Zijiang, 2003: Characteristics of the Heat Island Effect in Shanghai and Its Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 991-1001.  doi: 10.1007/BF02915522

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1985
Manuscript revised: 10 April 1985
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing

Abstract: Using the turbulent statistical form of the vertical vortex diffusion coefficient K, in the planetary boundary layer (PBL) and Ekman spiral wind profile, the three-dimensional diffusion equation is solved by the numeri-cal method. The influences of vertical shear of both wind direction and wind speed on pollution trajectory and horizontal diffusion parameters σy are numerically analysed. The expressions of both pollution trajectory and σy, including the factor of wind shear, are obtained. The results show that the vertical shear of wind is important among all factors affecting the mesoscale dispersion. Specifically, from neutral to stable atmospheric conditions, vertical shear of wind makes greater contribution to σy than turbulence, thus it is the most important factor. In this paper, we have compared horizontal dispersion pattern with both Pasquill's dispersion pattern considering wind direction shear, and experimental data collected at 9 different sites rang-ing from 10 to 100 km, and the results show that our dispersion pattern is closer to the experimental values than Pasquill's results, and his correction to shear of wind direction is too large under the stable conditions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return