Advanced Search

Volume 7 Issue 3

Jul.  1990

Article Contents

On the Couplings between Chebyshev Coefficients as Derived from the Monthly Mean Geopotential Fields at 500 hPa over East Asia and the Southern Oscillation


doi: 10.1007/BF03179766

  • The first six Chebyshev polynomial coefficients (i.e., A00, A01, A10, A11, A02, A20) were derived from monthly mean geopotential height over East Asia for the period 1951-1983. Spectral analysis of these coefficients reveals rela-tive maxima of power in the frequency bands of 200 months (~ 16.7 years), 25 months (the quasi-biennial oscillation), 5-6 months, and 2-3 months. Cross-spectral characteristics between Chebyshev coefficients and the Southern Oscillation Index (SOI) were also explored. Coherence spectrum for the zonal and meridional circulation index (A01 and A10) with the SOI was significant near 4 years, the QBO, and 2-3 months. Some physical explanations were offered for the spatial linkages (i.e., teleconnections) between the SO and atmospheric circulation anomalies over East Asia.
  • [1] Shi Neng, 1988: A MULTI-STATISTICAL ANALYSIS OF THE SOUTHERN OSCILLATION (SO) AND ITS RELATION TO THE MEAN MONTHLY ATMOSPHERIC CIRCULATION AT 500 hPa IN THE NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 345-360.  doi: 10.1007/BF02656758
    [2] Fang Zhifang, John M. Wallace, David W. J. Thompson, 2001: The Relationship between the Meridional Profile of Zonal mean Geostrophic Wind and Station Wave at 500 hPa, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 692-700.
    [3] Runhua Yang, William H. Klein, 1989: The Synoptic Climatology of Monthly Mean Surface Temperature in Asia in Relation to the 700 hPa Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 227-238.  doi: 10.1007/BF02658018
    [4] FU Yunfei, LIN Yihua, Guosheng LIU, WANG Qiang, 2003: Seasonal Characteristics of Precipitation in 1998 over East Asia as Derived from TRMM PR, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 511-529.  doi: 10.1007/BF02915495
    [5] Myoung-Hwan AHN, Eun-Ha SOHN, Byong-Jun HWANG, Chu-Yong CHUNG, Xiangqian WU, 2006: Derivation of Regression Coefficients for Sea Surface Temperature Retrieval over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 474-486.  doi: 10.1007/s00376-006-0474-7
    [6] S. V. Singh, S. R. Inamdar, R. H. Kripalani, K. D. Prasad, 1986: RELATIONSHIP BETWEEN 500 hPa RIDGE AXIS POSITIONS OVER THE INDIAN AND THE WEST PACIFIC REGIONS AND THE INDIAN SUMMER MONSOON RAINFALL, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 349-359.  doi: 10.1007/BF02678655
    [7] Ji Zhengang, Chao Jiping, 1987: TELECONNECTIONS OF THE SEA SURFACE TEMPERATURE IN THE INDIAN OCEAN WTTH SEA SURFACE TEMPERATURE IN THE EASTERN EQUATORIAL PACIFIC, AND WITH THE 500 hPa GEOPOTENTIAL HEIGHT FIELD IN THE NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 343-348.  doi: 10.1007/BF02663604
    [8] Tang Maocang, 1989: Some Annual Variation Characteristics for the Northern Hemispheric Monthly Mean Precipitation Fields, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 186-201.  doi: 10.1007/BF02658015
    [9] Shi Neng, Luo Boliang, 1991: Telecorrelation of the 500 hPa Polar Circulation and El Nino / SO with the Temperature Fields in China, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 289-298.  doi: 10.1007/BF02919611
    [10] ZHOU Ningfang, YU Yongqiang, QIAN Yongfu, 2006: Simulations of the 100-hPa South Asian High and Precipitation over East Asia with IPCC Coupled GCMs, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 375-390.  doi: 10.1007/s00376-006-0375-9
    [11] Chen Yingyi, 1993: Predictability of the 500 hPa Height Field, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 497-503.  doi: 10.1007/BF02656975
    [12] Wang Panxing, Gao Zhi, Li Changqing, 1987: ANALYSIS OF THE TELECONNECTIONAL STRUCTURES OF THE 500-hPa HEIGHT FIELD OVER THE NH IN JANUARY, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 185-197.  doi: 10.1007/BF02677065
    [13] Ding Aiju, Wang Mingxing, 1996: Model for Methane Emission from Rice Fields and Its Application in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 159-168.  doi: 10.1007/BF02656859
    [14] Wang Qianqian, Wang Anyu, Li Xuefeng, Li Shuren, 1986: THE EFFECTS OF THE QINGHAI-XIZANG PLATEAU ON THE MEAN SUMMER CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 72-85.  doi: 10.1007/BF02680046
    [15] ZHANG Yuli, LIU Yi, LIU Chuanxi, V. F. SOFIEVA, 2015: Satellite Measurements of the Madden-Julian Oscillation in Wintertime Stratospheric Ozone over the Tibetan Plateau and East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1481-1492.  doi: 10.1007/s00376-015-5005-y
    [16] HUANG Jiayou, TAN Benkui, SUO Lingling, HU Yongyun, 2007: Monthly Changes in the Influence of the Arctic Oscillation on Surface Air Temperature over China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 799-807.  doi: 10.1007/s00376-007-0799-x
    [17] ZHOU Yang, JIANG Jing, Youyu LU, and HUANG Anning, 2013: Revealing the effects of the El Nio-Southern oscillation on tropical cyclone intensity over the western North Pacific from a model sensitivity study, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1117-1128.  doi: 10.1007/s00376-012-2109-5
    [18] WANG Ning, ZHANG Yaocun, 2015: Connections between the Eurasian Teleconnection and Concurrent Variation of Upper-level Jets over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 336-348.  doi: 10.1007/s00376-014-4088-1
    [19] Di DI, Jun LI, Yunheng XUE, Min MIN, Bo LI, Zhenglong LI, 2024: Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 19-38.  doi: 10.1007/s00376-023-2332-2
    [20] Zhao Shengju, 1986: RELATION BETWEEN LONG-DISTANCE MIGRATION OF ORIENTAL ARMYWORMS AND SEASONAL VARIATION OF GENERAL CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 215-226.  doi: 10.1007/BF02682555

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1990
Manuscript revised: 10 July 1990
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On the Couplings between Chebyshev Coefficients as Derived from the Monthly Mean Geopotential Fields at 500 hPa over East Asia and the Southern Oscillation

  • 1. Department of Meteorology, Nanjing Institute of Meteorology, Nanjing 210044,Department of Meteorology, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.

Abstract: The first six Chebyshev polynomial coefficients (i.e., A00, A01, A10, A11, A02, A20) were derived from monthly mean geopotential height over East Asia for the period 1951-1983. Spectral analysis of these coefficients reveals rela-tive maxima of power in the frequency bands of 200 months (~ 16.7 years), 25 months (the quasi-biennial oscillation), 5-6 months, and 2-3 months. Cross-spectral characteristics between Chebyshev coefficients and the Southern Oscillation Index (SOI) were also explored. Coherence spectrum for the zonal and meridional circulation index (A01 and A10) with the SOI was significant near 4 years, the QBO, and 2-3 months. Some physical explanations were offered for the spatial linkages (i.e., teleconnections) between the SO and atmospheric circulation anomalies over East Asia.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return