Advanced Search

Volume 1 Issue 1

Jan.  1984

Article Contents

STUDY OF THE STRUCTURE OF A MONSOON DEPRESSION OVER THE BAY OF BENGAL DURING SUMMER MONEX


doi: 10.1007/BF03187617

  • Based on the data gathered during the Summer MONEX over the Bay of Bengal in July, 1979, a detailed observational study of the structure of a monsoon depression during the period of 3-8, July has been made. It has been revealed that the early disturbance of this depression was a mid-tropospheric cyclone. The subsequent rapid development was due mainly to the barotropic instability process of the basic zonal and meridional airflows.The cyclonic circulation of the depression extended in vertical upward to 500-400 mb level. Prior to the formation of the depression, the extremely strong westerly and northerly winds at the lower and middle levels, reaching the intensity of the low-level jet (22 m/s and 18.5 m/s, respectively), were observed. Post to the formation of the depression, a strong wind ring at the radius of 300-350 km from the depression center encircled the depression, with the wind maximum being at 850 mb. During this period, the maximum of the positive vorticity was of the magnitude of order of 10-4/s. The warm core at 400-300 mb was very remarkable. Finally, intrusion of the dry air over the depression may be an important factor leading to the weakening of the depression.
  • [1] D.M. CHATE, RT. . WAGHMARE, C.K. JENA, V. GOPALAKRISHNAN, P. MURUGAVEL, Sachin D. GHUDE, Rachana KULKARNI, P.C. S. DEVARA, 2018: Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 218-223.  doi: 10.1007/s00376-017-6331-z
    [2] FENG Junqiao, HU Dunxin, YU Lejiang, 2013: Role of Western Pacific Oceanic Variability in the Onset of the Bay of Bengal Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 219-234.  doi: 10.1007/s00376-012-2040-9
    [3] P. N. Mahajan, V. R. Mujumdar, S. P. Ghanekar, 1986: THE BURST OF INDIAN SUMMER MONSOON AS REVEALED BY GOES SATELLITE DURING MONEX 1979, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 514-519.  doi: 10.1007/BF02657941
    [4] Ghulam RASUL, Qamar-uz-Zaman CHAUDHRY, ZHAO Sixiong, ZENG Qingcun, QI Linlin, ZHANG Gaoying, 2005: A Diagnostic Study of Heavy Rainfall in Karachi Due to Merging of a Mesoscale Low and a Diffused Tropical Depression during South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 375-391.  doi: 10.1007/BF02918751
    [5] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8
    [6] V. HAMZA, C. A. BABU, T. P. SABIN, 2007: Characteristic Study of the Boundary Layer Parameters over the Arabian Sea and the Bay of Bengal Using the QuikSCAT Dataset, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 631-643.  doi: 10.1007/s00376-007-0631-7
    [7] S. V. Singh, C.M. Mohile, S. R. Inamdar, 1987: RELATIONSHIPS OF SOUTHERN-OSCILLATION AND OTHER LARGE-SCALE FEATURES WITH BAY OF BENGAL CYCLONES DURING THE POST-MONSOON SEASON, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 169-174.  doi: 10.1007/BF02677063
    [8] CHEN Bin, XU Xiang-De, YANG Shuai, ZHANG Wei, 2012: On the Temporal and Spatial Structure of Troposphere-to- Stratosphere Transport in the Lowermost Stratosphere over the Asian Monsoon Region during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1305-1317.  doi: 10.1007/s00376-012-1171-3
    [9] Xiaoli ZHOU, Wen ZHOU, Dongxiao WANG, Qiang XIE, Lei YANG, Qihua PENG, 2024: Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 881-893.  doi: 10.1007/s00376-023-3093-7
    [10] Feng Zhiqiang, Elmar R.Reiter, Chen Longxun, 1985: THE ATMOSPHERIC HEAT BUDGET OVER THE WESTERN PART OF THE TIBETAN PLATEAU DURING MONEX, 1979, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 455-468.  doi: 10.1007/BF02678744
    [11] Ni Yunqi, Lin Yuanbi, 1990: Numerical Study for Characteristic Change of Asian Summer Monsoon Circulation and Its Influence Mechanism during the El Nino Period, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 320-330.  doi: 10.1007/BF03179764
    [12] He Jinhai, T. Murakami, T. Nakazawa, 1987: ENERGY BALANCE IN 40-50 DAY PERIODIC OSCILLATION OVER THE ASIAN SUMMER MONSOON REGION DURING THE 1979 SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 66-73.  doi: 10.1007/BF02656662
    [13] DING Yihui, LIU Yanju, SONG Yafang, ZHANG Jin, 2015: From MONEX to the Global Monsoon: A Review of Monsoon System Research, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 10-31.  doi: 10.1007/s00376-014-0008-7
    [14] LI Wei-Wei, WANG Chunzai, WANG Dongxiao, YANG Lei, DENG Yi, 2012: Modulation of Low-Latitude West Wind on Abnormal Track and Intensity of Tropical Cyclone Nargis (2008) in the Bay of Bengal, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 407-421.  doi: 10.1007/s00376-011-0229-y
    [15] Bin Wang, Renguang Wu, 1997: Peculiar Temporal Structure of the South China Sea Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 177-194.  doi: 10.1007/s00376-997-0018-9
    [16] Long WEN, Wei ZHANG, Cha YANG, Gang CHEN, Yajun HU, Hao ZHANG, 2023: Near Homogeneous Microphysics of the Record-Breaking 2020 Summer Monsoon Rainfall during the Northward Migration over East China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1783-1798.  doi: 10.1007/s00376-023-2242-3
    [17] Minghao BI, Ke XU, Riyu LU, 2023: Monsoon Break over the South China Sea during Summer: Statistical Features and Associated Atmospheric Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1749-1765.  doi: 10.1007/s00376-023-2377-2
    [18] LIU Huaqiang, SUN Zhaobo, WANG Ju, MIN Jinzhong, 2004: A Modeling Study of the Effects of Anomalous Snow Cover over the Tibetan Plateau upon the South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 964-975.  doi: 10.1007/BF02915598
    [19] Wei Helin, Wang Wei-Chyung, 1998: A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 489-509.  doi: 10.1007/s00376-998-0027-3
    [20] Baek-Jo Kim, Sung-Euii Moon, Lu Riyu, R. H. Kripalani, 2002: Teleconnections: Summer Monsoon over Korea and India, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 665-676.  doi: 10.1007/s00376-002-0006-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1984
Manuscript revised: 10 January 1984
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

STUDY OF THE STRUCTURE OF A MONSOON DEPRESSION OVER THE BAY OF BENGAL DURING SUMMER MONEX

  • 1. InstituteofAtmosphericPhysics,AcademiaSinica.Beijing,InstituteofAtmosphericPhysics,AcademiaSinica.Beijing,InstituteofAtmosphericPhysics,AcademiaSinica.Beijing

Abstract: Based on the data gathered during the Summer MONEX over the Bay of Bengal in July, 1979, a detailed observational study of the structure of a monsoon depression during the period of 3-8, July has been made. It has been revealed that the early disturbance of this depression was a mid-tropospheric cyclone. The subsequent rapid development was due mainly to the barotropic instability process of the basic zonal and meridional airflows.The cyclonic circulation of the depression extended in vertical upward to 500-400 mb level. Prior to the formation of the depression, the extremely strong westerly and northerly winds at the lower and middle levels, reaching the intensity of the low-level jet (22 m/s and 18.5 m/s, respectively), were observed. Post to the formation of the depression, a strong wind ring at the radius of 300-350 km from the depression center encircled the depression, with the wind maximum being at 850 mb. During this period, the maximum of the positive vorticity was of the magnitude of order of 10-4/s. The warm core at 400-300 mb was very remarkable. Finally, intrusion of the dry air over the depression may be an important factor leading to the weakening of the depression.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return