Advanced Search

Volume 1 Issue 1

Jan.  1984

Article Contents

DETERMINATION OF ATMOSPHERIC PRECIPITABLE WATER AND HUMIDITY PROFILES BY A GROUND-BASED 1.35 cm RADIOMETER


doi: 10.1007/BF03187623

  • In four seasons of 1982 measurements of atmospheric water vapor profiles and total precipitable water were made by a ground-based microwave radiometer operating at 1.35 cm wavelength. All data were processed by using Monte Carlo method. The statistical results of more than seventy cases show that the relative error compared to the radiosonde observations is 5.3% for the total precipitable water vapor and less than 20% for humidity profiles in the lower atmosphere below 750 mb. In addition, the relationship between the weather background and both the humidity profiles and the total precipitable water vapor were analyzed.
  • [1] Huang Runkeng, Wei Chong, 1986: EXPERIMENTAL INVESTIGATION ON REAL-TIME REMOTE SENSING OF LAYERED ATMOSPHERIC PRECIPITABLE BY A GROUND-BASED RADIOMETER OF 1.35 cm WAVELENGTH, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 86-93.  doi: 10.1007/BF02680047
    [2] DING Jincai, YANG Yinming, YE Qixin, HUANG Yan, MA Xiaoxing, MA Leiming, Y. R. GUO, 2007: Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 409-420.  doi: 10.1007/s00376-007-0409-y
    [3] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [4] Minqiang ZHOU, Qichen NI, Zhaonan CAI, Bavo LANGEROCK, Jingyi JIANG, Ke CHE, Jiaxin WANG, Weidong NAN, Yi LIU, Pucai WANG, 2023: Ground-Based Atmospheric CO2, CH4, and CO Column Measurements at Golmud in the Qinghai-Tibetan Plateau and Comparisons with TROPOMI/S5P Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 223-234.  doi: 10.1007/s00376-022-2116-0
    [5] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [6] LIU Liping, ZHANG Zhiqiang, YU Danru, YANG Hu, ZHAO Chonghui, ZHONG Lingzhi, 2012: Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1318-1329.  doi: 10.1007/s00376-012-1233-6
    [7] Xiaotong ZHU, Qingqing LI, Jinhua YU, Dan WU, Kai YAO, 2018: Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China Based on Ground-Based Radar Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 592-603.  doi: 10.1007/s00376-017-7144-9
    [8] HUO Juan, ZHANG Wenxing, ZENG Xiaoxia, Lü Daren, LIU Yi, 2013: Examination of the Quality of GOSAT/CAI Cloud Flag Data over Beijing Using Ground-based Cloud Data, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1526-1534.  doi: 10.1007/s00376-013-2267-0
    [9] Debashis NATH, CHEN Wen, 2013: Investigating the Dominant Source for the Generation of Gravity Waves during Indian Summer Monsoon Using Ground-based Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 153-166.  doi: 10.1007/s00376-012-1273-y
    [10] B. S. K. REDDY, K. R. KUMAR, G. BALAKRISHNAIAH, K. R. GOPAL, R. R. REDDY, V. SIVAKUMAR, S. Md. ARAFATH, A. P. LINGASWAMY, S. PAVANKUMARI, K. UMADEVI, Y. N. AHAMMED, 2013: Ground-Based In Situ Measurements of Near-Surface Aerosol Mass Concentration over Anantapur: Heterogeneity in Source Impacts, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 235-246.  doi: 10.1007/s00376-012-1234-5
    [11] MIAO Qun, and Bart GEERTS, 2013: Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1025-1038.  doi: 10.1007/s00376-012-2128-2
    [12] WU Xue*, WANG Xin, and LÜ Daren, 2014: Retrieval of Vertical Distribution of Tropospheric Refractivity through Ground-Based GPS Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 37-47.  doi: 10.1007/s00376-013-2215-z
    [13] Yun HE, Fan YI, Fuchao LIU, Zhenping YIN, Jun ZHOU, 2022: Ice Nucleation of Cirrus Clouds Related to the Transported Dust Layer Observed by Ground-Based Lidars over Wuhan, China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2071-2086.  doi: 10.1007/s00376-021-1192-x
    [14] Denghui JI, Minqiang ZHOU, Pucai WANG, Yang YANG, Ting WANG, Xiaoyu SUN, Christian HERMANS, Bo YAO, Gengchen WANG, 2020: Deriving Temporal and Vertical Distributions of Methane in Xianghe Using Ground-based Fourier Transform Infrared and Gas-analyzer Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 597-607.  doi: 10.1007/s00376-020-9233-4
    [15] Yali LUO, Weimiao QIAN, Yu GONG, Hongyan WANG, Da-Lin ZHANG, 2016: Ground-Based Radar Reflectivity Mosaic of Mei-yu Precipitation Systems over the Yangtze River-Huaihe River Basins, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1285-1296.  doi: 10.1007/s00376-016-6022-1
    [16] Myoung-Joo LEE, Ki-Ho CHANG, Gyun-Myoung PARK, Jin-Yim JEONG, Ha-Young YANG, Ki-Deok JEONG, Joo-Wan CHA, Sung-Soo YUM, Jae-Cheol NAM, Kyungsik KIM, Byung-Chul CHOI, 2009: Preliminary Results of the Ground-Based Orographic Snow Enhancement Experiment for the Easterly Cold Fog (Cloud) at Daegwallyeong during the 2006 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 222-228.  doi: 10.1007/s00376-009-0222-x
    [17] Denghui JI, Minqiang ZHOU, Pucai WANG, Yang YANG, Ting WANG, Xiaoyu SUN, Christian HERMANS, Bo YAO, Gengchen WANG, 2024: Erratum to: Deriving Temporal and Vertical Distributions of Methane in Xianghe Using Ground-based Fourier Transform Infrared and Gas-analyzer Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 377-377.  doi: 10.1007s00376-023-3009-6
    [18] HUO Yanfeng, DUAN Minzheng, TIAN Wenshou, MIN Qilong, 2015: A Differential Optical Absorption Spectroscopy Method for X CO2 Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1119-1128.  doi: 10.1007/s00376-015-4213-9
    [19] Bo LIU, Juan HUO, Daren LYU, Xin WANG, 2021: Assessment of FY-4A and Himawari-8 Cloud Top Height Retrieval through Comparison with Ground-Based Millimeter Radar at Sites in Tibet and Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1334-1350.  doi: 10.1007/s00376-021-0337-2
    [20] YAO Zhanyu, XU Chenhai, YUAN Jian, LI Wanbiao, ZHU Yuanjing, ZHAO Bolin, 2003: Estimations of Precipitable Water and Its Characteristics during the HUBEX/IOP 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 219-226.  doi: 10.1007/s00376-003-0007-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1984
Manuscript revised: 10 January 1984
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

DETERMINATION OF ATMOSPHERIC PRECIPITABLE WATER AND HUMIDITY PROFILES BY A GROUND-BASED 1.35 cm RADIOMETER

  • 1. InstituteofAtmosphericPhysics,AcademiaSinica,Beijing,InstituteofAtmosphericPhysics,AcademiaSinica,Beijing,InstituteofAtmosphericPhysics,AcademiaSinica,Beijing,InstituteofAtmosphericPhysics,AcademiaSinica,Beijing

Abstract: In four seasons of 1982 measurements of atmospheric water vapor profiles and total precipitable water were made by a ground-based microwave radiometer operating at 1.35 cm wavelength. All data were processed by using Monte Carlo method. The statistical results of more than seventy cases show that the relative error compared to the radiosonde observations is 5.3% for the total precipitable water vapor and less than 20% for humidity profiles in the lower atmosphere below 750 mb. In addition, the relationship between the weather background and both the humidity profiles and the total precipitable water vapor were analyzed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return