Advanced Search
Article Contents

Preliminary Results from Numerical Experiments of a Heavy Rain Process with PENN STATE / NCAR MM5


doi: 10.1007/BF03342044

  • PENN STATE/ NCAR MM5 is used to simulate precipitation of the heavy rain process during 12-13 July 1994. The effects of different PBL parameterizations, resolvable scale moisture schemes and cumulus parameterization on the process rainfall simulation are investigated. By comparing the results of hydrostatic and nonhydrostatic experiments, the nonhydrostatic impact upon precipitation is also examined. It is found in this study that PENN STATE / NCAR MM5 has advantage not only in theory but also in simulating results with real data. In MM5, however, the selection of physical processes, especially water-cycle process, is very important and crucial to precipitation forecast of the case. It is concluded that the model with Grell (1993) scheme for convection and conden?sation method for resolvable scale precipitation captured the rainstorm during 12-13 July 1994 in Beijing area more successfully.
  • [1] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [2] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [3] WU Xian, FEI Jianfang, HUANG Xiaogang, ZHANG Xiang, CHENG Xiaoping, REN Jianqi, 2012: A Numerical Study of the Interaction between Two Simultaneous Storms: Goni and Morakot in September 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 561-574.  doi: 10.1007/s00376-011-1014-7
    [4] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7
    [5] Imoleayo Ezekiel GBODE, Toju Esther BABALOLA, Gulilat Tefera DIRO, Joseph Daniel INTSIFUL, 2023: Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 570-586.  doi: 10.1007/s00376-022-2161-8
    [6] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [7] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [8] Xia QU, Gang HUANG, 2019: Global Monsoon Changes under the Paris Agreement Temperature Goals in CESM1(CAM5), ADVANCES IN ATMOSPHERIC SCIENCES, 36, 279-291.  doi: 10.1007/s00376-018-8138-y
    [9] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [10] Tian FENG, Fumin REN, Da-Lin ZHANG, Guoping LI, Wenyu QIU, Hui YANG, 2020: Sideswiping Tropical Cyclones and Their Associated Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 707-717.  doi: 10.1007/s00376-020-9224-5
    [11] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [12] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [13] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7
    [14] Xingmin LI, Yan DONG, Zipeng DONG, Chuanli DU, Chuang CHEN, 2016: Observed Changes in Aerosol Physical and Optical Properties before and after Precipitation Events, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 931-944.  doi: 10.1007/s00376-016-5178-z
    [15] Xiaoling YANG, Botao ZHOU, Ying XU, Zhenyu HAN, 2021: CMIP6 Evaluation and Projection of Temperature and Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 817-830.  doi: 10.1007/s00376-021-0351-4
    [16] ZHANG Xinping, LIU Jingmiao, TIAN Lide, HE Yuanqing, YAO Tandong, 2004: Variations of 18O in Precipitation along Vapor Transport Paths, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 562-572.  doi: 10.1007/BF02915724
    [17] FU Danhong, GUO Xueliang, 2006: A Cloud-resolving Study on the Role of Cumulus Merger in MCS with Heavy Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 857-868.  doi: 10.1007/s00376-006-0857-9
    [18] SONG Lianchun, A. J. CANNON, P. H. WHITFIELD, 2007: Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 459-473.  doi: 10.1007/s00376-007-0459-1
    [19] YIN Shuiqing, LI Weijing, Deliang CHEN, Jee-Hoon JEONG, GUO Wenli, 2011: Diurnal Variations of Summer Precipitation in the Beijing Area and the Possible Effect of Topography and Urbanization, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 725-734.  doi: 10.1007/s00376-010-9240-y
    [20] Geng Quanzhen, Ding Yihui, Huang Chaoying, 1997: Influences of the Extratropical Pacific SST on the Precipitation of the North China Region, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 339-349.  doi: 10.1007/s00376-997-0054-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1996
Manuscript revised: 10 October 1996
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Preliminary Results from Numerical Experiments of a Heavy Rain Process with PENN STATE / NCAR MM5

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080, China,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080, China,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080, China

Abstract: PENN STATE/ NCAR MM5 is used to simulate precipitation of the heavy rain process during 12-13 July 1994. The effects of different PBL parameterizations, resolvable scale moisture schemes and cumulus parameterization on the process rainfall simulation are investigated. By comparing the results of hydrostatic and nonhydrostatic experiments, the nonhydrostatic impact upon precipitation is also examined. It is found in this study that PENN STATE / NCAR MM5 has advantage not only in theory but also in simulating results with real data. In MM5, however, the selection of physical processes, especially water-cycle process, is very important and crucial to precipitation forecast of the case. It is concluded that the model with Grell (1993) scheme for convection and conden?sation method for resolvable scale precipitation captured the rainstorm during 12-13 July 1994 in Beijing area more successfully.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return