Advanced Search
Article Contents

Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere


doi: 10.1007/BF03342045

  • The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC)in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century andmeteorological reanalyses for its second half, it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates. Nevertheless, some exceptions exist. The positive correlationbetween these two variables is found over the two desert regions: in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans. Southward of the characteristic annual mean snow-ice boundary (SIB) position, the shape ofthe SAT AC becomes more sinusoidal under climate warming. In contrast, northward of it, this shapebecomes less sinusoidal. The latter is also found for the above-mentioned two desert regions. In theFar East (southward of about 50N), the SAT AC shifts as a whole: here its spring and autumn phasesoccur earlier if the annual mean SAT increases. From energy-balance climate considerations, those trendsfor SAT AC APC in the middle and high latitudes are associated with the influence of the albedo-SATfeedback due to the SIB movement. In the Far East the trends are attributed to the interannual cloudinessvariability, and in the desert regions, to the influence of a further desertification and/or scattering aerosolloading into the atmosphere. In the north Pacific, the exhibited trends could only be explained as aresult of the influence of the greenhouse-gases loading on atmospheric opacity. The trends for SAT ACAPC related to the SIB movement are simulated reasonably well by the climate model of intermediatecomplexity (IAP RAS CM) in the experiment with greenhouse gases atmospheric loading. In contrast,the tendencies resulting from the cloudiness variability are not reproduced by this model. The model alsopartly simulates the tendencies related to the desertification processes.
  • [1] Alexey V. ELISEEV, Igor I. MOKHOV, Konstantin G. RUBINSTEIN, Maria S. GUSEVA, 2004: Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 837-847.  doi: 10.1007/BF02915586
    [2] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [3] ZHANG Lixia* and ZHOU Tianjun, , 2014: An Assessment of Improvements in Global Monsoon Precipitation Simulation in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 165-178.  doi: 10.1007/s00376-013-2164-6
    [4] HOU Jiangtao, JIA Gensuo, ZHAO Tianbao, WANG Hesong, TANG Bohui, , 2014: Satellite-Based Estimation of Daily Average Net Radiation under Clear-Sky Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 705-720.  doi: 10.1007/s00376-013-3047-6
    [5] Heng LYU, Wei WANG, Keer ZHANG, Chang CAO, Wei XIAO, Xuhui LEE, 2024: Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 817-829.  doi: 10.1007/s00376-023-3012-y
    [6] Bi Xunqiang, 1997: Parallel Computing of a Climate Model on the Dawn 1000 by Domain Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 569-572.  doi: 10.1007/s00376-997-0075-0
    [7] Susannah M. BURROWS, Aritra DASGUPTA, Sarah REEHL, Lisa BRAMER, Po-Lun MA, Philip J. RASCH, Yun QIAN, 2018: Characterizing the Relative Importance Assigned to Physical Variables by Climate Scientists when Assessing Atmospheric Climate Model Fidelity, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1101-1113.  doi: 10.1007/s00376-018-7300-x
    [8] Jinliang Liu, Han-Ru Cho, 2001: Effects of Topographic Slopes on Hydrological Proecsses and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 733-741.
    [9] Zhang Yu, Lu Shihua, 2002: Development and Validation of a Simple Frozen Soil Parameterization Scheme Used for Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 513-527.  doi: 10.1007/s00376-002-0083-z
    [10] Alexey V. ELISEEV, Igor I. MOKHOV, 2011: Uncertainty of Climate Response to Natural and Anthropogenic Forcings Due to Different Land Use Scenarios, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1215-1232.  doi: 10.1007/s00376-010-0054-8
    [11] Song Yukuan, Chen Longxun, Dong Min, 1994: Numerical Simulation for the Impact of Deforestation on Climate in China and Its Neighboring Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 212-223.  doi: 10.1007/BF02666547
    [12] Wang Huijun, Zhou Guangqing, Lin Zhaohui, Zhao Yan, Guo Yufu, Ma Zhuguo, 2001: Recent Researches on the Short-Term Climate Prediction at IAP-A Brief Review, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 929-936.
    [13] LI Xiangyu, JIANG Dabang, ZHANG Zhongshi, ZHANG Ran, TIAN Zhiping, YAN Qing, 2015: Mid-Pliocene Westerlies from PlioMIP Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 909-923.  doi: 10.1007/s00376-014-4171-7
    [14] Wang Hongqi, Zhao Gaoxiang, 2002: Parameterization of Longwave Optical Properties for Water Clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 25-34.  doi: 10.1007/s00376-002-0031-y
    [15] ZHONG Zhong, ZHAO Ming, SU Bingkai, TANG Jianping, 2003: On the Determination and Characteristics of Effective Roughness Length for Heterogeneous Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 71-76.  doi: 10.1007/BF03342051
    [16] Robert E. DICKINSON, Guiling WANG, Xubin ZENG, ZENG Qingcun, 2003: How Does the Partitioning of Evapotranspiration and Runoff between Different Processes Affect the Variability and Predictability of Soil Moisture and Precipitation?, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 475-478.  doi: 10.1007/BF02690805
    [17] QIAN Cheng, Zhaohua WU, FU Congbin, ZHOU Tianjun, 2010: On Multi-Timescale Variability of Temperature in China in Modulated Annual Cycle Reference Frame, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1169-1182.  doi: 10.1007/s00376-009-9121-4
    [18] LIN Pengfei, LIU Hailong, YU Yongqiang, ZHANG Xuehong, 2011: Response of Sea Surface Temperature to Chlorophyll-a Concentration in the Tropical Pacific: Annual Mean, Seasonal Cycle, and Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 492-510.  doi: 10.1007/s00376-010-0015-2
    [19] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [20] ZHANG Jie, Laurent LI, ZHOU Tianjun, and XIN Xiaoge, 2013: Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 699-712.  doi: 10.1007/s00376-013-2178-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2003
Manuscript revised: 10 January 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere

  • 1. A.M. Obukhov Institute of Atmospheric Physics RAS,3 Pyzhevsky, 109017 Moscow, Russia,A.M. Obukhov Institute of Atmospheric Physics RAS,3 Pyzhevsky, 109017 Moscow, Russia

Abstract: The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC)in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century andmeteorological reanalyses for its second half, it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates. Nevertheless, some exceptions exist. The positive correlationbetween these two variables is found over the two desert regions: in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans. Southward of the characteristic annual mean snow-ice boundary (SIB) position, the shape ofthe SAT AC becomes more sinusoidal under climate warming. In contrast, northward of it, this shapebecomes less sinusoidal. The latter is also found for the above-mentioned two desert regions. In theFar East (southward of about 50N), the SAT AC shifts as a whole: here its spring and autumn phasesoccur earlier if the annual mean SAT increases. From energy-balance climate considerations, those trendsfor SAT AC APC in the middle and high latitudes are associated with the influence of the albedo-SATfeedback due to the SIB movement. In the Far East the trends are attributed to the interannual cloudinessvariability, and in the desert regions, to the influence of a further desertification and/or scattering aerosolloading into the atmosphere. In the north Pacific, the exhibited trends could only be explained as aresult of the influence of the greenhouse-gases loading on atmospheric opacity. The trends for SAT ACAPC related to the SIB movement are simulated reasonably well by the climate model of intermediatecomplexity (IAP RAS CM) in the experiment with greenhouse gases atmospheric loading. In contrast,the tendencies resulting from the cloudiness variability are not reproduced by this model. The model alsopartly simulates the tendencies related to the desertification processes.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return