Advanced Search
Article Contents

Diagnosis of the Heavy Rain near a Meiyu Front Using the Wet Q Vector Partitioning Method


doi: 10.1007/BF03342048

  • A heavy rain process of the Changjiang-Huaihe Meiyu front (MYF) is diagnosed by the agency ofthe traditional Q vector partitioning (QVP) method to decompose the wet Q vector (Q) in a naturalcoordinate system that follows the isoentropes and by using the numerical simulation results of the revisedMM4 meso-scale model. The technique shows that the partitioned wet Q vectors can lead to a significantscale separation of vertical motion related to the torrential rain. The results not only verify the existingconclusion that different scales interact throughout the rainstorm but also indicate the largely differentroles of these scales during differing phases of the heavy rainfall on a quantitative basis. Specifically, duringthe developing stage, the large-scale plays a predominant role in forcing vertical motion, while frontal-scaleforcing is secondary; during the intense stage, the frontal-scale evolves into the primary factor of forcingvertical motion, whereas the large-scale forcing is minor and plays a diminishing role and can even beignored; and during the decaying stage, the large-scale once again serves as the main forcing of verticalmotion in such a way that the forcing of the frontal-scale decays quickly and is of secondary importance.Furthermore, the partitioned wet Q vectors are suggested to be more suitable than the total wet Q vectorfor evaluating the potential physical mechanism of rainstorm genesis. The first step is that the forcingof large-scale 27 @ Q*s gives rise to the genesis of meso-scale 2 @ Q*n forcing; and then, accordingly as27 @ Q*n forcing increases, whereby the secondary circulation is reinforced, the intensity of the rainfall isstrengthened; and at last, the secondary circulation caused by 2 @ Q*n forcing is directly responsible forgeneration of the MYF heavy rainfall.
  • [1] Shou Shaowen, Zhu Aimin, 1993: Diagnostic Study of a Winter Snowstorm Event, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 428-434.  doi: 10.1007/BF02656967
    [2] YUE Caijun, SHOU Shaowen, 2008: A Modified Moist Ageostrophic Q Vector, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1053-1061.  doi: 10.1007/s00376-008-1053-x
    [3] YAO Xiuping, YU Yubin, SHOU Shaowen, 2004: Diagnostic Analyses and Application of the Moist Ageostrophic Vector Q, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 96-102.  doi: 10.1007/BF02915683
    [4] WU Xiandu, RAN Lingkun, CHU Yanli, 2011: Diagnosis of a Moist Thermodynamic Advection Parameter in Heavy-Rainfall Events, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 957-972.  doi: 10.1007/s00376-009-9057-8
    [5] Yonghan CHOI, Joowan KIM, Dong-Kyou LEE, 2012: Characteristics and Nonlinear Growth of the Singular Vector Related to a Heavy Rainfall Case over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 10-28.  doi: 10.1007/s00376-011-0194-5
    [6] Gang LI, Daoyong YANG, Xiaohua JIANG, Jing PAN, Yanke TAN, 2017: Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 88-100.  doi: 10.1007/s00376-016-6124-9
    [7] Na LI, Lingkun RAN, Linna ZHANG, Shouting GAO, 2017: Potential Deformation and Its Application to the Diagnosis of Heavy Precipitation in Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 894-908.  doi: 10.1007/s00376-017-6282-4
    [8] Zhang Qihe, Yu Shihua, 1990: Diagnosis of the Medium-Range Variation of the Subtropical High over the Western Pacific during a Meiyu Process by Three-Dimensional E-P Flux, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 463-474.  doi: 10.1007/BF03342565
    [9] Xiuping YAO, Ruoying LI, Xiaohong BAO, Qiaohua LIU, 2024: Diagnosis of the Kinetic Energy of the “21·7” Extreme Torrential Rainfall Event in Henan Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 73-83.  doi: 10.1007/s00376-023-3025-6
    [10] Michael B. RICHMAN, Lance M. LESLIE, Theodore B. TRAFALIS, Hicham MANSOURI, 2015: Data Selection Using Support Vector Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 277-286.  doi: 10.1007/s00376-014-4072-9
    [11] Wang Xingbao, Wu Rongsheng, 1999: Interaction of Orographic Disturbance with Front, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 467-481.  doi: 10.1007/s00376-999-0024-1
    [12] Jing WANG, Bin WANG, Juanjuan LIU, Yongzhu LIU, Jing CHEN, Zhenhua HUO, 2020: Application and Characteristic Analysis of the Moist Singular Vector in GRAPES-GEPS, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1164-1178.  doi: 10.1007/s00376-020-0092-9
    [13] Xin LIU, Jing CHEN, Yongzhu LIU, Zhenhua HUO, Zhizhen XU, Fajing CHEN, Jing WANG, Yanan MA, Yumeng HAN, 2024: An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 545-563.  doi: 10.1007/s00376-023-3035-4
    [14] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART I: OBSERVATIONAL STUDIES, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 264-277.  doi: 10.1007/BF02915593
    [15] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [16] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α-SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART II: THE DYNAMICAL ANALYSIS OF RAIN-BAND DISTURBANCE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 485-495.  doi: 10.1007/BF02656747
    [17] CHEN Hua, GUO Jing, XIONG Wei, GUO Shenglian, Chong-Yu XU, 2010: Downscaling GCMs Using the Smooth Support Vector Machine Method to Predict Daily Precipitation in the Hanjiang Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 274-284.  doi: 10.1007/s00376-009-8071-1
    [18] Zhou Jiabin, Wang Yunkuan, Yang Guiying, Wu Jinsheng, 1994: A Forecasting Model of Vector Similarity in Phase Space for Flood and Drought over the Huanghe-Huaihe-Haihe Plain in China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 224-229.  doi: 10.1007/BF02666548
    [19] Lingkun RAN, Changsheng CHEN, 2016: Diagnosis of the Forcing of Inertial-gravity Waves in a Severe Convection System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1271-1284.  doi: 10.1007/s00376-016-5292-y
    [20] Yong-Sang CHOI, Chang-Hoi HO, Sang-Woo KIM, Richard S. LINDZEN, 2010: Observational Diagnosis of Cloud Phase in the Winter Antarctic Atmosphere for Parameterizations in Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1233-1245.  doi: 10.1007/s00376-010-9175-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2003
Manuscript revised: 10 January 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Diagnosis of the Heavy Rain near a Meiyu Front Using the Wet Q Vector Partitioning Method

  • 1. Department of Atmospheric Sciences, Nanjing Institute of Meteorology, Nanjing 210044,Department of Atmospheric Sciences, Nanjing Institute of Meteorology, Nanjing 210044,Department of Atmospheric Sciences, Nanjing Institute of Meteorology, Nanjing 210044,Department of Atmospheric Sciences, Nanjing Institute of Meteorology, Nanjing 210044

Abstract: A heavy rain process of the Changjiang-Huaihe Meiyu front (MYF) is diagnosed by the agency ofthe traditional Q vector partitioning (QVP) method to decompose the wet Q vector (Q) in a naturalcoordinate system that follows the isoentropes and by using the numerical simulation results of the revisedMM4 meso-scale model. The technique shows that the partitioned wet Q vectors can lead to a significantscale separation of vertical motion related to the torrential rain. The results not only verify the existingconclusion that different scales interact throughout the rainstorm but also indicate the largely differentroles of these scales during differing phases of the heavy rainfall on a quantitative basis. Specifically, duringthe developing stage, the large-scale plays a predominant role in forcing vertical motion, while frontal-scaleforcing is secondary; during the intense stage, the frontal-scale evolves into the primary factor of forcingvertical motion, whereas the large-scale forcing is minor and plays a diminishing role and can even beignored; and during the decaying stage, the large-scale once again serves as the main forcing of verticalmotion in such a way that the forcing of the frontal-scale decays quickly and is of secondary importance.Furthermore, the partitioned wet Q vectors are suggested to be more suitable than the total wet Q vectorfor evaluating the potential physical mechanism of rainstorm genesis. The first step is that the forcingof large-scale 27 @ Q*s gives rise to the genesis of meso-scale 2 @ Q*n forcing; and then, accordingly as27 @ Q*n forcing increases, whereby the secondary circulation is reinforced, the intensity of the rainfall isstrengthened; and at last, the secondary circulation caused by 2 @ Q*n forcing is directly responsible forgeneration of the MYF heavy rainfall.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return