Advanced Search
Article Contents

Influence of Interannual Variability of Antarctic Sea-Ice on Summer Rainfall in Eastern China


doi: 10.1007/BF03342053

  • Based on the Antarctic sea-ice coverage reanalysis data from the Hadley Center and other observationaldata during the 30-year period from 1969 to 1998, it is shown that Antarctic sea-ice coverage exhibitsconsiderable interannual variability with a complex relation to El Nino and the South Oscillation (ENSO).Besides this, the ice maintains the seasonal persistence of the atmospheric circulation in high latitudesof the Southern Hemisphere. Thus it can be used as a predictor in short-term climate prediction. Bothcorrelation and time series analyses demonstrate that summer rainfall in eastern China is closely relatedto Antarctic sea-ice coverage. When it is extended during boreal spring through summer, there is morerainfall in the lower reaches of the Yellow River of North China, and in contrast, less rainfall is found in theZhujiang River basin of South China and Northeast China. A further analysis indicates that this rainfallpattern is related to the intensity of the East Asian summer monsoon caused by interannual variability ofAntarctic sea-ice coverage.
  • [1] HAN Leqiong, LI Shuanglin, LIU Na, 2014: An Approach for Improving Short-Term Prediction of Summer Rainfall over North China by Decomposing Interannual and Decadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 435-448.  doi: 10.1007/s00376-013-3016-0
    [2] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [3] YE Hong, LU Riyu, 2012: Dominant Patterns of Summer Rainfall Anomalies in East China during 1951--2006, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 695-704.  doi: 10.1007/s00376-012-1153-5
    [4] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [5] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [6] Kaiming HU, Yingxue LIU, Gang HUANG, Zhuoqi HE, Shang-Min LONG, 2020: Contributions to the Interannual Summer Rainfall Variability in the Mountainous Area of Central China and Their Decadal Changes, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 259-268.  doi: 10.1007/s00376-019-9099-5
    [7] WU Bingyi, ZHANG Renhe, Bin WANG, 2009: On the Association between Spring Arctic Sea Ice Concentration and Chinese Summer Rainfall: A Further Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 666-678.  doi: 10.1007/s00376-009-9009-3
    [8] Yali ZHU, Tao WANG, Jiehua MA, 2016: Influence of Internal Decadal Variability on the Summer Rainfall in Eastern China as Simulated by CCSM4, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 706-714.  doi: 10.1007/s00376-016-5269-x
    [9] LI Chun, MA Hao, 2011: Coupled Modes of Rainfall over China and the Pacific Sea Surface Temperature in Boreal Summertime, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1201-1214.  doi: 10.1007/s00376-011-0127-3
    [10] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [11] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [12] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [13] HUANG Gang, LIU Yong, HUANG Ronghui, 2011: The Interannual Variability of Summer Rainfall in the Arid and Semiarid Regions of Northern China and Its Association with the Northern Hemisphere Circumglobal Teleconnection, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 257-268.  doi: 10.1007/s00376-010-9225-x
    [14] Xiaoxuan ZHAO, Riyu LU, 2020: Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 173-186.  doi: 10.1007/s00376-019-9103-0
    [15] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [16] LU Riyu, YE Hong, Jong-Ghap JHUN, 2011: Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1246-1258.  doi: 10.1007/s00376-011-0222-5
    [17] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [18] Hai ZHI, Rong-Hua ZHANG, Fei ZHENG, Pengfei LIN, Lanning WANG, Peng YU, 2016: Assessment of Interannual Sea Surface Salinity Variability and Its Effects on the Barrier Layer in the Equatorial Pacific Using BNU-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 339-351.  doi: 10.1007/s00376-015-5163-y
    [19] Kaiqing YANG, Dabang JIANG, 2017: Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 497-508.  doi: 10.1007/s00376-016-6075-1
    [20] Riyu LU, Saadia HINA, Xiaowei HONG, 2020: Upper- and Lower-tropospheric Circulation Anomalies Associated with Interannual Variation of Pakistan Rainfall during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1179-1190.  doi: 10.1007/s00376-020-0137-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2003
Manuscript revised: 10 January 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Influence of Interannual Variability of Antarctic Sea-Ice on Summer Rainfall in Eastern China

  • 1. Institute of Atmosphere Physics, Chinese Academy of Sciences, Beijing 100029,KLME, Nanjing Institute of Meteorology, Nanjing 210044,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093

Abstract: Based on the Antarctic sea-ice coverage reanalysis data from the Hadley Center and other observationaldata during the 30-year period from 1969 to 1998, it is shown that Antarctic sea-ice coverage exhibitsconsiderable interannual variability with a complex relation to El Nino and the South Oscillation (ENSO).Besides this, the ice maintains the seasonal persistence of the atmospheric circulation in high latitudesof the Southern Hemisphere. Thus it can be used as a predictor in short-term climate prediction. Bothcorrelation and time series analyses demonstrate that summer rainfall in eastern China is closely relatedto Antarctic sea-ice coverage. When it is extended during boreal spring through summer, there is morerainfall in the lower reaches of the Yellow River of North China, and in contrast, less rainfall is found in theZhujiang River basin of South China and Northeast China. A further analysis indicates that this rainfallpattern is related to the intensity of the East Asian summer monsoon caused by interannual variability ofAntarctic sea-ice coverage.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return