Advanced Search
Article Contents

Barotropic Interaction between Planetary- and Synoptic-Scale Waves during the Life Cycles of Blockings


doi: 10.1007/s00376-000-0026-5

  • In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity and phase under the forcing of localized synoptic-scale eddies. The numerical solutions of these equations predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the synoptic-scale eddies, only when the high-frequency eddies themselves have a moderate parameter match they can near resonantly enhance a quasi-stationary large-amplitude split flow. The instantaneous total streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic-scale waves) is found to be very similar to the observed Berggren-type blocking on the weather map (Berggren et al. 1149). The role of synoptic-scale eddies is to increase the amplitude of large-scale dipole anomaly flow, and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why and how the synoptic-scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly found that during the prevalence of the vortex pair block the synoptic-scale eddies are split into two branches around the vortex pair block due to the feedback of amplified dipole block.
  • [1] Debashis NATH, CHEN Wen, WANG Lin, and MA Yin, 2014: Planetary Wave Reflection and Its Impact on Tropospheric Cold Weather over Asia during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 851-862.  doi: 10.1007/s00376-013-3195-8
    [2] Debashis NATH, Wen CHEN, 2016: Impact of Planetary Wave Reflection on Tropospheric Blocking over the Urals-Siberia Region in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 309-318.  doi: 10.1007/s00376-015-5052-4
    [3] Luo Dehai, Li Jianping, Huang Fei, 2002: Life Cycles of Blocking Flows Associated with Synoptic-Scale Eddies: Observed Results and Numerical Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 594-618.  doi: 10.1007/s00376-002-0003-2
    [4] Dorina CHYI, Zuowei XIE, Ning SHI, Pinwen GUO, Huijun WANG, 2020: Wave-Breaking Features of Blocking over Central Siberia and Its Impacts on the Precipitation Trend over Southeastern Lake Baikal, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 75-89.  doi: 10.1007/s00376-019-9048-3
    [5] Yao YAO, Dehai LUO, 2018: An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 796-812.  doi: 10.1007/s00376-017-7128-9
    [6] Mozheng WEI, Jorgen S. FREDERIKSEN, 2005: Finite-Time Normal Mode Disturbances and Error Growth During Southern Hemisphere Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 69-89.  doi: 10.1007/BF02930871
    [7] Cholaw BUEH, Jingbei PENG, Dawei LIN, Bomin CHEN, 2022: On the Two Successive Supercold Waves Straddling the End of 2020 and the Beginning of 2021, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 591-608.  doi: 10.1007/s00376-021-1107-x
    [8] DIAO Yina, FENG Guolin, LIU Shida, LIU Shikuo, LUO Dehai, HUANG Sixun, LU Weisong, CHOU Jifan, 2004: Review of the Study of Nonlinear Atmospheric Dynamics in China (1999-2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 399-406.  doi: 10.1007/BF02915567
    [9] DING Ruiqiang, FENG Guolin, LIU Shida, LIU Shikuo, HUANG Sixun, FU Zuntao, 2007: Nonlinear Atmospheric and Climate Dynamics in China (2003--2006): A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1077-1085.  doi: 10.1007/s00376-007-1077-7
    [10] HAN Zhe, LI Shuanglin, MU Mu, 2011: The Role of Warm North Atlantic SST in the Formation of Positive Height Anomalies over the Ural Mountains during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 246-256.  doi: 10.1007/s00376-010-0069-1
    [11] Luo Dehai, Li Jianping, 2001: Interaction between a Slowly Moving Planetary-Scale Dipole Envelope Rossby Soliton and a Wavenumber-Two Topography in a Forced Higher Order Nonlinear Schr dinger Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 239-256.  doi: 10.1007/s00376-001-0017-1
    [12] LUO Dehai, LIU Jinting, LI Jianping, 2010: Interaction between Planetary-Scale Diffluent Flow and Synoptic-Scale Waves During the Life Cycle of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 807-831.  doi: 10.1007/s00376-009-9074-7
    [13] Yong. L. McHall, 1992: Nonlinear Planetary Wave Instability and Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 173-190.  doi: 10.1007/BF02657508
    [14] Luo Dehai, Ji Liren, 1988: ALGEBRAIC ROSSBY SOLITARY WAVE AND BLOCKING IN THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 445-454.  doi: 10.1007/BF02656790
    [15] Luo Dehai, 1990: Topographically Forced Rossby Wave Instability and the Development of Blocking in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 433-440.  doi: 10.1007/BF03008873
    [16] Zhu Zhengxin, 1985: EQUILIBRIUM STATES OF PLANETARY WAVES FORCED BY TOPOGRAPHY AND PERTURBATION HEATING AND BLOCKING SITUATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 359-367.  doi: 10.1007/BF02677252
    [17] Zhao Qiang, Fu Zuntao, Liu Shikuo, 2001: Equatorial Envelope Rossby Solitons in a Shear Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 418-428.  doi: 10.1007/BF02919321
    [18] Dehai LUO, Binhe LUO, Wenqi ZHANG, 2023: A Perspective on the Evolution of Atmospheric Blocking Theories: From Eddy-Mean flow Interaction to Nonlinear Multiscale Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 553-569.  doi: 10.1007/s00376-022-2194-z
    [19] Yong. L. McHall, 1991: Blocking Distributions in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 327-338.  doi: 10.1007/BF02919615
    [20] Luo Dehai, 1999: Nonlinear Three-Wave Interaction among Barotropic Rossby Waves in a Large-scale Forced Barotropic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 451-466.  doi: 10.1007/s00376-999-0023-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 2000
Manuscript revised: 10 October 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Barotropic Interaction between Planetary- and Synoptic-Scale Waves during the Life Cycles of Blockings

  • 1. Department of Atmospheric and Oceanic Sciences; Ocean; University of Qingdao; Key Laboratory of Marine Science and Numerical Modeling; State Oceanic Administration; Qingdao 266003,LASG; Institute of Atmospheric Physics; Chinese

Abstract: In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity and phase under the forcing of localized synoptic-scale eddies. The numerical solutions of these equations predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the synoptic-scale eddies, only when the high-frequency eddies themselves have a moderate parameter match they can near resonantly enhance a quasi-stationary large-amplitude split flow. The instantaneous total streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic-scale waves) is found to be very similar to the observed Berggren-type blocking on the weather map (Berggren et al. 1149). The role of synoptic-scale eddies is to increase the amplitude of large-scale dipole anomaly flow, and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why and how the synoptic-scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly found that during the prevalence of the vortex pair block the synoptic-scale eddies are split into two branches around the vortex pair block due to the feedback of amplified dipole block.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return