Advanced Search
Article Contents

Streamwise Vorticity Equation


doi: 10.1007/s00376-000-0027-4

  • A streamwise vorticity equation is derived in generalized natural coordinates. This equation reveals that the total change and local change of the streamwise vorticity are mainly determined by the curvature of streamline, unsteady feature of streamline and magnitude of velocity. This equation enables the study of mesoscale or small-scale systems since the term associated with pressure gradient force in the original vorticity equation is replaced by terms associated with streamlines and wind speed. With this modification the wind field rather than the pressure field is used in the calculation considering that 1) the pressure field is to adapt wind field. 2) Smoother and more consecutive streamline pattern is easier to obtain either by data analysis or by the numerical simulation. From this sense, this present study suggests the application of this equation to studying the evolution of severe storm system as well as other simplified cases.
  • [1] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6
    [2] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [3] ZHAO Kun, LIU Guoqing, GE Wenzhong, DANG Renqing, Takao TAKEDA, 2003: Retrieval of Single-Doppler Radar Wind Field by Nonlinear Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 195-204.  doi: 10.1007/s00376-003-0004-9
    [4] Nian LIU, Zhongwei YAN, Xuan TONG, Jiang JIANG, Haochen LI, Jiangjiang XIA, Xiao LOU, Rui REN, Yi FANG, 2022: Meshless Surface Wind Speed Field Reconstruction Based on Machine Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1721-1733.  doi: 10.1007/s00376-022-1343-8
    [5] P.C.S. Devara, G. Chandrasekhar, M.I. Ahmed, 1989: Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 357-364.  doi: 10.1007/BF02661541
    [6] Zhang Qin, Zhu Yufeng, Ni Yunqi, 1995: QBO Features of Tropical Pacific wind Stress Field with the Relation to El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 87-94.  doi: 10.1007/BF02661290
    [7] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [8] Chao LIU, Li FU, Dan YANG, David R. MILLER, Junming WANG, 2020: Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 90-104.  doi: 10.1007/s00376-019-9052-7
    [9] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2023: Modulation of the Wind Field Structure of Initial Vortex on the Relationship between Tropical Cyclone Size and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1707-1721.  doi: 10.1007/s00376-023-2233-4
    [10] Wang Shaowu, Todd P. Mitchell, John M. Wallace, 1987: ZONAL AND MERIDIONAL CIRCULATIONS IN THE EQUA-TORIALZONE AS DEDUCED FROM THE DIVERGENCE FIELD OF THE SURFACE WIND, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 432-446.  doi: 10.1007/BF02656743
    [11] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [12] Kong Fanyou, Mao jietai, 1994: A Model Study of Three Dimensional Wind Field Analysis from Dual-Doppler Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 162-174.  doi: 10.1007/BF02666543
    [13] Wang Ling, Xu Yinzi, 1997: The Influence of Weakly-Nonlinear Vertical Advection on the Wind Field of PBL with Large-Scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 59-68.  doi: 10.1007/s00376-997-0044-7
    [14] Chenbin XUE, Zhiying DING, Xinyong SHEN, Xian CHEN, 2022: Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method: Refinement of Vertical Velocity Estimates, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 145-160.  doi: 10.1007/s00376-021-1035-9
    [15] Poonam Mehra, 1989: Lunar Phases and Atmospheric Electric Field, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 239-246.  doi: 10.1007/BF02658019
    [16] Chen Yingyi, 1993: Predictability of the 500 hPa Height Field, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 497-503.  doi: 10.1007/BF02656975
    [17] Poonam Sikka, A. Mary Selvam, A.S. Ramachandra Murty, 1988: POSSIBLE SOLAR INFLUENCE ON ATMOSPHERIC ELECTRIC FIELD, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 217-228.  doi: 10.1007/BF02656783
    [18] Zeng Qingcun, Zeng Xiaodong, Lu Peisheng, 1994: Simplified Dynamic Models of Grass Field Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 385-390.  doi: 10.1007/BF02658157
    [19] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [20] Zuohao Cao, 1999: Dynamics of Absolute Vorticity in the Boussinesq Fluid, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 482-486.  doi: 10.1007/s00376-999-0025-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2000
Manuscript revised: 10 September 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Streamwise Vorticity Equation

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A streamwise vorticity equation is derived in generalized natural coordinates. This equation reveals that the total change and local change of the streamwise vorticity are mainly determined by the curvature of streamline, unsteady feature of streamline and magnitude of velocity. This equation enables the study of mesoscale or small-scale systems since the term associated with pressure gradient force in the original vorticity equation is replaced by terms associated with streamlines and wind speed. With this modification the wind field rather than the pressure field is used in the calculation considering that 1) the pressure field is to adapt wind field. 2) Smoother and more consecutive streamline pattern is easier to obtain either by data analysis or by the numerical simulation. From this sense, this present study suggests the application of this equation to studying the evolution of severe storm system as well as other simplified cases.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return