Advanced Search
Article Contents

The Use of Dual-Doppler Radar Data in the Study of 1998 Meiyu Frontal Precipitation in Huaihe River Basin


doi: 10.1007/s00376-000-0032-7

  • During the Meiyu period in June and July of 1998, intensified field observations have been carried out for the project “Huaihe River Basin Energy and Water Cycle Experiment (HUBEX)”. For studying Meiyu front and its precipitation in Huaihe River basin, the present paper has performed analysis on the middle and lower level wind fields in the troposphere by using the radar data obtained from the two Doppler radars located at Fengtai district and Shouxian County. From June 29 to July 3 in 1998, the continuous heavy precipitation occurred in Huaihe River basin around Meiyu front. The precipitation process on July 2 occurred within the observation range of the two Doppler radar in Fengtai district and Shouxian County. The maximum rainfall of the Meiyu front was over 100 mm in 24 h, so it can be regarded as a typical mesoscale heavy precipitation process related to Meiyu front. Based on the wind field retrieved from the dual Doppler radar, we find that there are meso-γ scale vertical circulations in the vertical cross-section perpendicular to Meiyu front, the strong upward motion of which corresponds to the position of the heavy rainfall area. Furthermore, other results obtained by this study are identical with the results by analyzing the conventional synoptic data years ago. For example: in the vicinity of 3 km level height ahead of Meiyu front there exists a southwest low-level jet; the rainstorm caused by Meiyu front mainly occurs at the left side of the southwest low-level jet; and the Meiyu front causes the intensification of the low-level convergence in front of it.
  • [1] LIU Liping, ZHUANG Wei, ZHANG Pengfei, MU Rong, 2010: Convective Scale Structure and Evolution of a Squall Line Observed by C-Band Dual Doppler Radar in an Arid Region of Northwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1099-1109.  doi: 10.1007/s00376-009-8217-1
    [2] JIN Xin, LI Wanbiao, ZHU Yuanjing, 2003: A Study on the Meiyu Front Using TRMM/PR Data during the 1998 GAME/HUBEX, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 293-298.  doi: 10.1007/s00376-003-0015-6
    [3] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART I: OBSERVATIONAL STUDIES, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 264-277.  doi: 10.1007/BF02915593
    [4] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α-SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART II: THE DYNAMICAL ANALYSIS OF RAIN-BAND DISTURBANCE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 485-495.  doi: 10.1007/BF02656747
    [5] Chenbin XUE, Zhiying DING, Xinyong SHEN, Xian CHEN, 2022: Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method: Refinement of Vertical Velocity Estimates, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 145-160.  doi: 10.1007/s00376-021-1035-9
    [6] SUN Jianhua, ZHANG Xiaoling, QI Linlin, ZHAO Sixiong, 2005: An Analysis of a Meso-β System in a Mei-yu Front Using the Intensive Observation Data During CHeRES 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 278-289.  doi: 10.1007/BF02918517
    [7] SHAO Aimei, QIU Chongjian, LIU Liping, 2004: Kinematic Structure of a Heavy Rain Event from Dual-Doppler Radar Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 609-616.  doi: 10.1007/BF02915728
    [8] Kong Fanyou, Mao jietai, 1994: A Model Study of Three Dimensional Wind Field Analysis from Dual-Doppler Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 162-174.  doi: 10.1007/BF02666543
    [9] Peng Jiayi, Wu Rongsheng, Wang Yuan, 2002: Initiation Mechanism of Meso-β Scale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 870-884.  doi: 10.1007/s00376-002-0052-6
    [10] WANG Pengyun, YANG Jing, 2003: Observation and Numerical Simulation of Cloud Physical Processes Associated with Torrential Rain of the Meiyu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 77-96.  doi: 10.1007/BF03342052
    [11] YUE Caijun, SHOU Shaowen, LIN Kaiping, YAO Xiuping, 2003: Diagnosis of the Heavy Rain near a Meiyu Front Using the Wet Q Vector Partitioning Method, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 37-44.  doi: 10.1007/BF03342048
    [12] Fan Beifen, Ye Jiadong, William R. Cotton, Gregory J. Tripoli, 1990: Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 154-170.  doi: 10.1007/BF02919153
    [13] LIN Yinjing, WANG Hongqing, HAN Lei, ZHENG Yongguang, WANG Yu, 2010: Quantitative Analysis of Meso-β-scale Convective Cells and Anvil Clouds over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1089-1098.  doi: 10.1007/s00376-010-9154-8
    [14] WANG Zhi, GAO Kun, 2006: Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 267-281.  doi: 10.1007/s00376-006-0267-z
    [15] Fang Juan, Wu Rongsheng, 1998: Frontogenesis, Evolution and the Time Scale of Front Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 233-246.  doi: 10.1007/s00376-998-0042-4
    [16] Zipeng YUAN, Xiaoyong ZHUGE, Yuan WANG, 2020: The Forced Secondary Circulation of the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 766-780.  doi: 10.1007/s00376-020-9177-8
    [17] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [18] Kun ZHAO, Hao HUANG, Mingjun WANG, Wen-Chau LEE, Gang CHEN, Long WEN, Jing WEN, Guifu ZHANG, Ming XUE, Zhengwei YANG, Liping LIU, Chong WU, Zhiqun HU, Sheng CHEN, 2019: Recent Progress in Dual-Polarization Radar Research and Applications in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 961-974.  doi: 10.1007/s00376-019-9057-2
    [19] ZHAO Kun, LIU Guoqing, GE Wenzhong, DANG Renqing, Takao TAKEDA, 2003: Retrieval of Single-Doppler Radar Wind Field by Nonlinear Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 195-204.  doi: 10.1007/s00376-003-0004-9
    [20] PENG Xindong, ZHANG Renhe, WANG Hongyan, 2013: Kinematic Features of a Bow Echo in Southern China Observed with Doppler Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1535-1548.  doi: 10.1007/s00376-012-2108-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2000
Manuscript revised: 10 September 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Use of Dual-Doppler Radar Data in the Study of 1998 Meiyu Frontal Precipitation in Huaihe River Basin

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Institute for Hydrospheric- Atmospheric Sriences, Nagoya University, Japan

Abstract: During the Meiyu period in June and July of 1998, intensified field observations have been carried out for the project “Huaihe River Basin Energy and Water Cycle Experiment (HUBEX)”. For studying Meiyu front and its precipitation in Huaihe River basin, the present paper has performed analysis on the middle and lower level wind fields in the troposphere by using the radar data obtained from the two Doppler radars located at Fengtai district and Shouxian County. From June 29 to July 3 in 1998, the continuous heavy precipitation occurred in Huaihe River basin around Meiyu front. The precipitation process on July 2 occurred within the observation range of the two Doppler radar in Fengtai district and Shouxian County. The maximum rainfall of the Meiyu front was over 100 mm in 24 h, so it can be regarded as a typical mesoscale heavy precipitation process related to Meiyu front. Based on the wind field retrieved from the dual Doppler radar, we find that there are meso-γ scale vertical circulations in the vertical cross-section perpendicular to Meiyu front, the strong upward motion of which corresponds to the position of the heavy rainfall area. Furthermore, other results obtained by this study are identical with the results by analyzing the conventional synoptic data years ago. For example: in the vicinity of 3 km level height ahead of Meiyu front there exists a southwest low-level jet; the rainstorm caused by Meiyu front mainly occurs at the left side of the southwest low-level jet; and the Meiyu front causes the intensification of the low-level convergence in front of it.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return