Advanced Search
Article Contents

A Simulating Study on Resolvable-Scale Microphysical Parameterization in a Mesoscale Model


doi: 10.1007/s00376-000-0038-1

  • The Penn State/ NCAR Mesoscale Model (MM5) is used to simulate the precipitation event that oc-curred during 1-2 May 1994 to the south of the Yangtze River. In five experiments the Kain-Fritsch scheme is made use of for the subgrid-scale convective precipitation, but five different resolvable-scale microphysical parameterization schemes are employed. They are the simple super-saturation removal scheme, the warm rain scheme of Hsie et al. (1984), the simple ice scheme of Dudhia (1989), the complex mixed-phase scheme developed by Reisner et al. (1993). and the GSFC microphysical scheme with graupel. Our interest is how the various resolvable-scale schemes affect the domain-averaged precipitation, the pre-cipitation distribution, the sea level pressure, the cloud water and the cloud ice.Through a series of experiments about a warm sector rainfall case, results show that although the dif-ferent resolvable-scale scheme is used, the differences of the precipitation characteristics among all five runs are not very obvious. However, the precipitation is over-predicted and the strong mesoscale low is produced by the simple super-saturation removal scheme. The warm rain scheme with the inclusion of condensation and evaporation under-predicts the precipitation and allows the cloud water to reach the 300 hPa level The scheme of the addition of graupel increases the resolvable-scale precipitation by about 20%–30%. The inclusion of supercooled liquid water in the grid-scale scheme does not affect significantly the results.
  • [1] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [2] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [3] Qingwei ZENG, Yun ZHANG, Hengchi LEI, Yanqiong XIE, Taichang GAO, Lifeng ZHANG, Chunming WANG, Yanbin HUANG, 2019: Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1103-1120.  doi: 10.1007/s00376-019-8225-8
    [4] Yating ZHAO, Ming XUE, Jing JIANG, Xiao-Ming HU, Anning HUANG, 2024: Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 619-638.  doi: 10.1007/s00376-023-2353-x
    [5] Jie ZHANG, Tongwen WU, Fang ZHANG, Kalli FURTADO, Xiaoge XIN, Xueli SHI, Jianglong LI, Min CHU, Li ZHANG, Qianxia LIU, Jinghui Yan, Min WEI, Qiang MA, 2021: BCC-ESM1 Model Datasets for the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 317-328.  doi: 10.1007/s00376-020-0151-2
    [6] Jiangbo JIN, Duoying JI, Xiao DONG, Kece FEI, Run GUO, Juanxiong HE, Yi YU, Zhaoyang CHAI, He ZHANG, Dongling ZHANG, Kangjun CHEN, Qingcun ZENG, 2024: CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP), ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3089-3
    [7] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [8] Yuan WANG, Jonathan M. VOGEL, Yun LIN, Bowen PAN, Jiaxi HU, Yangang LIU, Xiquan DONG, Jonathan H. JIANG, Yuk L. YUNG, Renyi ZHANG, 2018: Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 234-247.  doi: 10.1007/s00376-017-7091-5
    [9] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [10] Liwei ZOU, Tianjun ZHOU, Jianping TANG, Hailong LIU, 2020: Introduction to the Regional Coupled Model WRF4-LICOM: Performance and Model Intercomparison over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 800-816.  doi: 10.1007/s00376-020-9268-6
    [11] SHI Xueli, XIE Zhenghui, LIU Yiming, YANG Hongwei, 2007: Implementation of a Surface Runoff Model with Horton and Dunne Mechanisms into the Regional Climate Model RegCM_NCC, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 750-764.  doi: 10.1007/s00376-007-0750-1
    [12] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [13] WANG Xiaocong, LIU Yimin, WU Guoxiong, Shian-Jiann LIN, BAO Qing, 2013: The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 89-100.  doi: 10.1007/s00376-012-2039-2
    [14] GAO Wenhua, SUI Chung-Hsiung, 2013: A Modeling Analysis of Rainfall and Water Cycle by the Cloud-resolving WRF Model over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1695-1711.  doi: 10.1007/s00376-013-2288-8
    [15] DAN Li, JI Jinjun, LI Yinpeng, 2007: The Interactive Climate and Vegetation Along the Pole-Equator Belts Simulated by a Global Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 239-249.  doi: 10.1007/s00376-007-0239-y
    [16] Tian FENG, Fumin REN, Da-Lin ZHANG, Guoping LI, Wenyu QIU, Hui YANG, 2020: Sideswiping Tropical Cyclones and Their Associated Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 707-717.  doi: 10.1007/s00376-020-9224-5
    [17] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [18] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [19] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [20] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2000
Manuscript revised: 10 September 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Simulating Study on Resolvable-Scale Microphysical Parameterization in a Mesoscale Model

  • 1. Department of Atmospheric Sciences, Zhongshan University, Guangzhou 510275,Geophysical and Meteorological Observatory, Macao,Department of Atmospheric Sciences, Zhongshan University, Guangzhou 510275,Geophysical and Meteorological Observatory, Macao,Department of Atmospheric Sciences, Zhongshan University, Guangzhou 510275,Department of Atmospheric Sciences, Zhongshan University, Guangzhou 510275

Abstract: The Penn State/ NCAR Mesoscale Model (MM5) is used to simulate the precipitation event that oc-curred during 1-2 May 1994 to the south of the Yangtze River. In five experiments the Kain-Fritsch scheme is made use of for the subgrid-scale convective precipitation, but five different resolvable-scale microphysical parameterization schemes are employed. They are the simple super-saturation removal scheme, the warm rain scheme of Hsie et al. (1984), the simple ice scheme of Dudhia (1989), the complex mixed-phase scheme developed by Reisner et al. (1993). and the GSFC microphysical scheme with graupel. Our interest is how the various resolvable-scale schemes affect the domain-averaged precipitation, the pre-cipitation distribution, the sea level pressure, the cloud water and the cloud ice.Through a series of experiments about a warm sector rainfall case, results show that although the dif-ferent resolvable-scale scheme is used, the differences of the precipitation characteristics among all five runs are not very obvious. However, the precipitation is over-predicted and the strong mesoscale low is produced by the simple super-saturation removal scheme. The warm rain scheme with the inclusion of condensation and evaporation under-predicts the precipitation and allows the cloud water to reach the 300 hPa level The scheme of the addition of graupel increases the resolvable-scale precipitation by about 20%–30%. The inclusion of supercooled liquid water in the grid-scale scheme does not affect significantly the results.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return