Advanced Search
Article Contents

The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model


doi: 10.1007/s00376-000-0041-6

  • Based on a 200 year simulation and reanalysis data (1980-1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this research that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40-110oE, 10-20oN), including the Indian monsoon and the Southeast Asian monsoon, while the EAM defined in this paper is located in the subtropical region of East Asia (110-125oE, 20-40oN). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper.In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anomalous winter EAM may have some correlation with the succeeding summer EAM, but this relationship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well.
  • [1] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [2] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [3] HUANG Ronghui, ZHOU Liantong, CHEN Wen, 2003: The Progresses of Recent Studies on the Variabilities of the East Asian Monsoon and Their Causes, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 55-69.  doi: 10.1007/BF03342050
    [4] LI Hongmei, ZHOU Tianjun, LI Chao, 2010: Decreasing Trend in Global Land Monsoon Precipitation over the Past 50 Years Simulated by a Coupled Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 285-292.  doi: 10.1007/s00376-009-8173-9
    [5] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [6] CAO Jian, Bin WANG, Baoqiang XIANG, Juan LI, WU Tianjie, Xiouhua FU, WU Liguang, MIN Jinzhong, 2015: Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model (NESM), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 585-600.  doi: 10.1007/s00376-014-4200-6
    [7] Guo Yufu, Yu Yongqiang, Liu Xiying, Zhang Xuehong, 2001: Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 53-66.  doi: 10.1007/s00376-001-0004-6
    [8] Wang Shiyu, Qian Yongfu, 2001: Modeling of the 1998 East Asian Summer Monsoon by a Limited Area Model with Incorporated Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 209-224.  doi: 10.1007/s00376-001-0014-4
    [9] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [10] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [11] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [12] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [13] ZHI Hai, WANG Panxing, DAN Li, YU Yongqiang, XU Yongfu, ZHENG Weipeng, 2009: Climate-Vegetation Interannual Variability in a Coupled Atmosphere-Ocean-Land Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 599-612.  doi: 10.1007/s00376-009-0599-6
    [14] WangHuijun, Xue Feng, Bi Xunqiang, 1997: The Interannual Variability and Predictability in a Global Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 554-562.  doi: 10.1007/s00376-997-0073-2
    [15] LU Riyu, YE Hong, Jong-Ghap JHUN, 2011: Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1246-1258.  doi: 10.1007/s00376-011-0222-5
    [16] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [17] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [18] SHENG Li, LIU Shuhua, Heping LIU, 2010: Influences of Climate Change and Its Interannual Variability on Surface Energy Fluxes from 1948 to 2000, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1438-1452.  doi: 10.1007/s00376-010-9215-z
    [19] Kaiqing YANG, Dabang JIANG, 2017: Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 497-508.  doi: 10.1007/s00376-016-6075-1
    [20] Dabang JIANG, Dan HU, Zhiping TIAN, Xianmei LANG, 2020: Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1102-1118.  doi: 10.1007/s00376-020-2034-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2000
Manuscript revised: 10 January 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model

  • 1. Laboratory for Numerical Modeling of Atmospheric Science and Geophysical Fluid Dynamics (LASG).Institute of Atmospheric Physics; Chinese Academy of Sciences. Beijing 100029

Abstract: Based on a 200 year simulation and reanalysis data (1980-1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this research that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40-110oE, 10-20oN), including the Indian monsoon and the Southeast Asian monsoon, while the EAM defined in this paper is located in the subtropical region of East Asia (110-125oE, 20-40oN). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper.In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anomalous winter EAM may have some correlation with the succeeding summer EAM, but this relationship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return