Advanced Search
Article Contents

The Maintenance of the Blocking over the Ural Mountains during the Second Meiyu Period in the Summer of 1998


doi: 10.1007/s00376-001-0006-4

  • The 1998 summer-time floods at the Yangtze River basin of China, the severest in last 50 years or so,directly resulted from the abnormal extension of Meiyu (rainy season), which was related to a weak East Asian summer monsoon and persistent anomalies of extratropical circulation. The long persistence of blocking over the Ural Mountains is a conspicuous feature. The physical processes responsible for the prolonged maintenance of this key system are investigated in terms of internal forcing (transient eddy upon basic flow)and external forcing (tropical heating forcing) via diagnosis and numerical experiments in the paper. Using the adjoint method, the location and structure of optimal perturbations favorable for the development and maintenance of Ural blocking are identified, which shows an apparent coincidence with the observed storm track at the eastern Atlantic to Europe sector. The diagnosis of E-vector and the response of baroclinic stationary wave to transient forcing both suggest further that the enhanced transient eddy activity favors the occurrence and maintenance of positive anomalies. The upper-level jet and heat sources (sinks) during that period are calculated, and the results indicate that the anomaly of upper jet and tropical heating is evident. The ensemble forecasting experiments by a GCM, IAP T42L9 show that the anomalous heating over the tropics, especially over the central-western Pacific and Atlantic, favors the formation of positive anomalies of height at the Ural region. Finally, a self-sustain mechanism of positive anomalies through two-way interaction between planetary stationary wave and transient eddy under the stimulation of anomalous tropical heating is proposed.
  • [1] Li Shuanglin, Ji Liren, Lin Wantao, 2001: On the Formation and Maintenance of the Persistent Anomalies of Summertime Circulation over the Ural Mountains, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 819-830.
    [2] ZHI Hai, WANG Panxing, DAN Li, YU Yongqiang, XU Yongfu, ZHENG Weipeng, 2009: Climate-Vegetation Interannual Variability in a Coupled Atmosphere-Ocean-Land Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 599-612.  doi: 10.1007/s00376-009-0599-6
    [3] GAO Rong, DONG Wenjie, WEI Zhigang, 2008: Simulation and Analysis of China Climate Using Two-Way Interactive Atmosphere-Vegetation Model (RIEMS-AVIM), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1085-1097.  doi: 10.1007/s00376-008-1085-2
    [4] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [5] He Jinhai, Zhou Xueming, Ye Rongsheng, 1995: Numerical Study of Ural Blocking High’s Effect Upon Asian Summer Monsoon Circulation and East China Flood and Drought, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 361-370.  doi: 10.1007/BF02656985
    [6] LI Xiaofeng, LI Jianping, Xiangdong ZHANG, 2013: A Two-way Stratosphere-Troposphere Coupling of Submonthly Zonal-Mean Circulations in the Arctic, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1771-1785.  doi: 10.1007/s00376-013-2210-4
    [7] Chan XIAO, Peili WU, Lixia ZHANG, Robin T. CLARK, 2018: Increasing Flash Floods in a Drying Climate over Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1094-1099.  doi: 10.1007/s00376-018-7275-7
    [8] Ambrogio VOLONTÉ, Mark MUETZELFELDT, Reinhard SCHIEMANN, Andrew G. TURNER, Nicholas KLINGAMAN, 2021: Magnitude, Scale, and Dynamics of the 2020 Mei-yu Rains and Floods over China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2082-2096.  doi: 10.1007/s00376-021-1085-z
    [9] Yao YAO, Wenqi ZHANG, Dehai LUO, Linhao ZHONG, Lin PEI, 2022: Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in China during the Early Winter of 2020/21, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 609-624.  doi: 10.1007/s00376-021-1100-4
    [10] Dehai LUO, Binhe LUO, Wenqi ZHANG, 2023: A Perspective on the Evolution of Atmospheric Blocking Theories: From Eddy-Mean flow Interaction to Nonlinear Multiscale Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 553-569.  doi: 10.1007/s00376-022-2194-z
    [11] Anmin DUAN, Ruizao SUN, Jinhai HE, 2017: Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 157-168.  doi: 10.1007/s00376-016-6008-z
    [12] PING Fan, GAO Shouting, WANG Huijun, 2003: A Comparative Study of the Numerical Simulation of the 1998 Summer Flood in China by Two Kinds of Cumulus Convective Parameterized Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 149-157.  doi: 10.1007/BF03342059
    [13] HAN Zhe, LI Shuanglin, MU Mu, 2011: The Role of Warm North Atlantic SST in the Formation of Positive Height Anomalies over the Ural Mountains during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 246-256.  doi: 10.1007/s00376-010-0069-1
    [14] Ting LEI, Shuanglin LI, 2023: The Role of Underlying Boundary Forcing in Shaping the Recent Decadal Change of Persistent Anomalous Activity over the Ural Mountains, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2365-6
    [15] Ren Zhenqiu, 1987: THE ABNORMAL PERIODS OF CLIMATE IN CHINA OVER THE PAST 5000 YEARS AND THEIR CAUSES, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 210-217.  doi: 10.1007/BF02677067
    [16] Shaolei TANG, Jing-Jia LUO, Jiaying HE, Jiye WU, Yu ZHOU, Wushan YING, 2021: Toward Understanding the Extreme Floods over Yangtze River Valley in June−July 2020: Role of Tropical Oceans, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2023-2039.  doi: 10.1007/s00376-021-1036-8
    [17] Yao HA, Zhong ZHONG, Haikun ZHAO, Yimin ZHU, Yao YAO, Yijia HU, 2022: A Climatological Perspective on Extratropical Synoptic-Scale Transient Eddy Activity Response to Western Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 333-343.  doi: 10.1007/s00376-021-0375-9
    [18] MA Jiehua, WANG Huijun, FAN Ke, 2015: Dynamic Downscaling of Summer Precipitation Prediction over China in 1998 Using WRF and CCSM4, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 577-584.  doi: 10.1007/s00376-014-4143-y
    [19] Fei WANG, Lifang SHENG, Xiadong AN, Haixia ZHOU, Yingying ZHANG, Xiaodong LI, Yigeng DING, Jing YANG, 2022: The Impact of an Abnormal Zonal Vertical Circulation in Autumn of Super El Niño Years on Non-tropical-cyclone Heavy Rainfall over Hainan Island, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1914-1924.  doi: 10.1007/s00376-022-1388-8
    [20] SONG Fengfei, and ZHOU Tianjun, 2013: FGOALS-s2 Simulation of Upper-level Jet Streams over East Asia: Mean State Bias and Synoptic-scale Transient Eddy Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 739-753.  doi: 10.1007/s00376-012-2212-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2001
Manuscript revised: 10 January 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Maintenance of the Blocking over the Ural Mountains during the Second Meiyu Period in the Summer of 1998

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Chinese Academy of Meteorological Sciences, Beijing 100081

Abstract: The 1998 summer-time floods at the Yangtze River basin of China, the severest in last 50 years or so,directly resulted from the abnormal extension of Meiyu (rainy season), which was related to a weak East Asian summer monsoon and persistent anomalies of extratropical circulation. The long persistence of blocking over the Ural Mountains is a conspicuous feature. The physical processes responsible for the prolonged maintenance of this key system are investigated in terms of internal forcing (transient eddy upon basic flow)and external forcing (tropical heating forcing) via diagnosis and numerical experiments in the paper. Using the adjoint method, the location and structure of optimal perturbations favorable for the development and maintenance of Ural blocking are identified, which shows an apparent coincidence with the observed storm track at the eastern Atlantic to Europe sector. The diagnosis of E-vector and the response of baroclinic stationary wave to transient forcing both suggest further that the enhanced transient eddy activity favors the occurrence and maintenance of positive anomalies. The upper-level jet and heat sources (sinks) during that period are calculated, and the results indicate that the anomaly of upper jet and tropical heating is evident. The ensemble forecasting experiments by a GCM, IAP T42L9 show that the anomalous heating over the tropics, especially over the central-western Pacific and Atlantic, favors the formation of positive anomalies of height at the Ural region. Finally, a self-sustain mechanism of positive anomalies through two-way interaction between planetary stationary wave and transient eddy under the stimulation of anomalous tropical heating is proposed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return