Advanced Search
Article Contents

On the 4D Variational Data Assimilation with Constraint Conditions


doi: 10.1007/s00376-001-0028-y

  • An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction.
  • [1] ZHANG Xin, LIU Yuewei, WANG Bin, JI Zhongzhen, 2004: Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 220-226.  doi: 10.1007/BF02915708
    [2] ZHANG Xiaoyan, WANG Bin, JI Zhongzhen, Qingnong XIAO, ZHANG Xin, 2003: Initialization and Simulation of a Typhoon Using 4-Dimensional Variational Data Assimilation-Research on Typhoon Herb(1996), ADVANCES IN ATMOSPHERIC SCIENCES, 20, 612-622.  doi: 10.1007/BF02915504
    [3] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [4] Wang Yuan, Wu Rongsheng, 2001: Theoretical Aspect of Suitable Spatial Boundary Condition Specified for Adjoint Model on Limited Area, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1081-1089.  doi: 10.1007/s00376-001-0024-2
    [5] FANG Changluan, ZHENG Qin, WU Wenhua, DAI Yi, 2009: Intelligent Optimization Algorithms to VDA of Models with on/off Parameterizations, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1181-1197.  doi: 10.1007/s00376-009-8084-9
    [6] HUANG Sixun, CAO Xiaoqun, DU Huadong, WANG Tingfang, XIANG Jie, 2006: Retrieval of Atmospheric and Oceanic Parameters and the Relevant Numerical Calculation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 106-117.  doi: 10.1007/s00376-006-0011-8
    [7] Zhu Jiang, Masafumi Kamachi, Zhou Guangqing, 2002: Nonsmooth Optimization Approaches to VDA of Models with on/ off Parameterizations: Theoretical Issues, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 405-424.  doi: 10.1007/s00376-002-0075-z
    [8] Chuan GAO, Xinrong WU, Rong-Hua ZHANG, 2016: Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 875-888.  doi: 10.1007/s00376-016-5249-1
    [9] Chaoqun MA, Tijian WANG, Zengliang ZANG, Zhijin LI, 2018: Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 813-825.  doi: 10.1007/s00376-017-7179-y
    [10] WANG Yunfeng, WANG Bin, HAN Yueqi, ZHU Min, HOU Zhiming, ZHOU Yi, LIU Yudi, KOU Zheng, 2004: Variational Data Assimilation Experiments of Mei-Yu Front Rainstorms in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 587-596.  doi: 10.1007/BF02915726
    [11] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [12] WANG Bin, LIU Juanjuan, WANG Shudong, CHENG Wei, LIU Juan, LIU Chengsi, Qingnong XIAO, Ying-Hwa KUO, 2010: An Economical Approach to Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 715-727.  doi: 10.1007/s00376-009-9122-3
    [13] ZENG Zhihua, DUAN Yihong, LIANG Xudong, MA Leiming, Johnny Chung-leung CHAN, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 534-544.  doi: 10.1007/BF02918486
    [14] Bohua Huang, James L. Kinter III, Paul S. Schopf, 2002: Ocean Data Assimilation Using Intermittent Analyses and Continuous Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 965-992.  doi: 10.1007/s00376-002-0059-z
    [15] LIU Hongya, XUE Jishan, GU Jianfeng, XU Haiming, 2012: Radar Data Assimilation of the GRAPES Model and Experimental Results in a Typhoon Case, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 344-358.  doi: 10.1007/s00376-011-1063-y
    [16] LIU Ye, YAN Changxiang, 2010: Application of a Recursive Filter to a Three-Dimensional Variational Ocean Data Assimilation System, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 293-302.  doi: 10.1007/s00376-009-8112-9
    [17] Xin LI, Mingjian ZENG, Yuan WANG, Wenlan WANG, Haiying WU, Haixia MEI, 2016: Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1143-1157.  doi: 10.1007/s00376-016-5255-3
    [18] ZHANG Lin, NI Yunqi, 2005: Four-Dimensional Variational Data Assimilation Experiments for a Heavy Rain Case During the 2002 IOP in China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 300-312.  doi: 10.1007/BF02918519
    [19] LIU Juanjuan, WANG Bin, WANG Shudong, 2010: The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1303-1310.  doi: 10.1007/s00376-010-9067-6
    [20] LIU Juan, WANG Bin, LIU Hailong, YU Yongqiang, 2008: A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 680-691.  doi: 10.1007/s00376-008-0680-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2001
Manuscript revised: 10 November 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On the 4D Variational Data Assimilation with Constraint Conditions

  • 1. Chengdu University of Information Technology, Chengdu 610041

Abstract: An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return