Advanced Search
Article Contents

lnterannual and lnterdecadal Variability of East Asian Acas and Their Impact on Temperature of China in Winter Season for the Last Century


doi: 10.1007/s00376-001-0041-1

  • The interannual and interdecadal variability of the Siberian High (SH) and the Aleutian Low (AL) from aspects of strength and location for the past one hundred years as well as their possible relations with temperature changes over mainland China are investigated. The data sets used are the historical sea level pressure for 1871-1995 and surface air temperature (SAT) over China in the last 100 years. The results show that the SAT in different regions over China, central strength of the SH and the AL, the south-reaching latitude of the 1030 hPa contour of the SH and the pressure gradient between the SH and the AL experienced two obvious changes during this period. One occurred in the 1920s, with a more prominent one in the 1980s. These variations are closely linked with the change of winter temperature over China in the interdecadal timescale. In the last 50 years, there is a remarkable interannual correlation between the strength of Active Centers of Atmosphere (Acas) and the winter temperature of northern and eastern regions in China. The abrupt change of Acas in the 1980s is consistent with the rising of the SAT in China. Since the late 1980s, the atmospheric circulation is experiencing a remarkable modulation, which may cause the interdecadal transition of warming trend.
  • [1] MAN Wenmin, and ZHOU Tianjun, 2014: Regional-scale Surface Air Temperature and East Asian Summer Monsoon Changes during the Last Millennium Simulated by the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 765-778.  doi: 10.1007/s00376-013-3123-y
    [2] HAN Zuoqiang, YAN Zhongwei*, LI Zhen, LIU Weidong, and WANG Yingchun, 2014: Impact of Urbanization on Low-Temperature Precipitation in Beijing during 19602008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 48-56.  doi: 10.1007/s00376-013-2211-3
    [3] Tao WANG, Qiang FU, Wenshou TIAN, Hongwen LIU, Yifeng PENG, Fei XIE, Hongying TIAN, Jiali LUO, 2023: The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2262-2278.  doi: 10.1007/s00376-022-2033-2
    [4] HU Yongyun, ZHOU Chen, LIU Jiping, 2011: Observational Evidence for Poleward Expansion of the Hadley Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 33-44.  doi: 10.1007/s00376-010-0032-1
    [5] CHEN Wei, and LU Riyu, 2014: A Decadal Shift of Summer Surface Air Temperature over Northeast Asia around the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 735-742.  doi: 10.1007/s00376-013-3154-4
    [6] WANG Jia, ZHI Xiefei, and CHEN Yuwen, 2013: Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1129-1142.  doi: 10.1007/s00376-012-2182-9
    [7] CHEN Wei, LU Riyu, 2014: The Interannual Variation in Monthly Temperature over Northeast China during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 515-524.  doi: 10.1007/s00376-013-3102-3
    [8] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [9] ZHU Yali, WANG Huijun, 2010: The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 177-184.  doi: 10.1007/s00376-009-8144-1
    [10] Jeong-Hyeong LEE, Byungsoo KIM, Keon-Tae SOHN, Won-Tae KOWN, Seung-Ki MIN, 2005: Climate Change Signal Analysis for Northeast Asian Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 159-171.  doi: 10.1007/BF02918506
    [11] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [12] Jing Peng, Li Dan, xiba tang, 2023: Spatial variation in CO2 concentration improves simulated surface air temperature increase in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3249-5
    [13] Paul D. WILLIAMS, 2017: Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 576-586.  doi: 10.1007/s00376-017-6268-2
    [14] SHENG Li, LIU Shuhua, Heping LIU, 2010: Influences of Climate Change and Its Interannual Variability on Surface Energy Fluxes from 1948 to 2000, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1438-1452.  doi: 10.1007/s00376-010-9215-z
    [15] ZHANG Lixia* and ZHOU Tianjun, , 2014: An Assessment of Improvements in Global Monsoon Precipitation Simulation in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 165-178.  doi: 10.1007/s00376-013-2164-6
    [16] Xiujing YU, Guoyu REN, Panfeng ZHANG, Jingbiao HU, Ning LIU, Jianping LI, Chenchen ZHANG, 2020: Extreme Temperature Change of the Last 110 Years in Changchun, Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 347-358.  doi: 10.1007/s00376-020-9165-z
    [17] Lanying CHEN, Renhao WU, Qi SHU, Chao MIN, Qinghua YANG, Bo HAN, 2023: The Arctic Sea Ice Thickness Change in CMIP6’s Historical Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2331-2343.  doi: 10.1007/s00376-022-1460-4
    [18] Yan XIA, Yongyun HU, Jiankai ZHANG, Fei XIE, Wenshou TIAN, 2021: Record Arctic Ozone Loss in Spring 2020 is Likely Caused by North Pacific Warm Sea Surface Temperature Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1723-1736.  doi: 10.1007/s00376-021-0359-9
    [19] LI Qingxiang, LIU Xiaoning, ZHANG Hongzheng, Thomas C. PETERSON, David R. EASTERLING, 2004: Detecting and Adjusting Temporal Inhomogeneity in Chinese Mean Surface Air Temperature Data, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 260-268.  doi: 10.1007/BF02915712
    [20] Jeong-Hyeong LEE, Keon-Tae SOHN, 2007: Prediction of Monthly Mean Surface Air Temperature in a Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 503-508.  doi: 10.1007/s00376-007-0503-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2001
Manuscript revised: 10 July 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

lnterannual and lnterdecadal Variability of East Asian Acas and Their Impact on Temperature of China in Winter Season for the Last Century

  • 1. Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871,School of Earth and Environmental Sciences, Seoul National U niversity, Seoul 151,Korea

Abstract: The interannual and interdecadal variability of the Siberian High (SH) and the Aleutian Low (AL) from aspects of strength and location for the past one hundred years as well as their possible relations with temperature changes over mainland China are investigated. The data sets used are the historical sea level pressure for 1871-1995 and surface air temperature (SAT) over China in the last 100 years. The results show that the SAT in different regions over China, central strength of the SH and the AL, the south-reaching latitude of the 1030 hPa contour of the SH and the pressure gradient between the SH and the AL experienced two obvious changes during this period. One occurred in the 1920s, with a more prominent one in the 1980s. These variations are closely linked with the change of winter temperature over China in the interdecadal timescale. In the last 50 years, there is a remarkable interannual correlation between the strength of Active Centers of Atmosphere (Acas) and the winter temperature of northern and eastern regions in China. The abrupt change of Acas in the 1980s is consistent with the rising of the SAT in China. Since the late 1980s, the atmospheric circulation is experiencing a remarkable modulation, which may cause the interdecadal transition of warming trend.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return