Advanced Search
Article Contents

The Wave Train Characteristics of Teleconnection Caused by the Thermal Anomaly of the Underlying Surface of the Tibetan Plateau. Part Ⅰ: Data Analysis


doi: 10.1007/s00376-002-0002-3

  • The effect of the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous winter and spring on the precipitation over the middle and lower reaches of the Yangtze River (MRYR) in the subsequent summer was investigated. Through data analysis, the influence of" strong signal" features of the three-dimensional thermal anomaly of the Plateau upon the precipitation anomaly over MRYR in the subsequent summer was revealed. This feature of the signal shows that from 0 cm to 320 cm under the surface of the ground, the soil temperature anomalies of the Tibetan Plateau manifest out of phase distribution in flood years and drought years over MRYR. In flood years over MRYR, there is a positive soil temperature anomaly in the region of the southern Tibetan Plateau (to the south of 30°N) and a negative anomaly in the region of the middle and northern Tibetan Plateau (to the north of 30°N), while in drought years the distribution of the soil temperature anomaly is opposite to the one in flood years. The maximum value of the soil temperature anomaly lies in the levels between 40 cm and 160 cm under the surface of the ground. Meanwhile, the data analysis also shows that the general circulation in the Northern Hemisphere may respond to the thermal anomaly of the Tibetan Plateau and form the propagation of a low frequency wave train with a seasonal time scale, and this wave train may affect the precipitation over MRYR in the subsequent summer.Analyses reveal that the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous winter and spring is one of the key influencing factors for the subsequent summer precipitation over MRYR.
  • [1] QIAN Yongfu, ZHANG Yan, HUANG Yanyan, HUANG Ying, YAO Yonghong, 2004: The Effects of the Thermal Anomalies over the Tibetan Plateau and Its Vicinities on Climate Variability in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 369-381.  doi: 10.1007/BF02915565
    [2] Yin ZHAO, Tianjun ZHOU, Wenxia ZHANG, Jian LI, 2022: Change in Precipitation over the Tibetan Plateau Projected by Weighted CMIP6 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1133-1150.  doi: 10.1007/s00376-022-1401-2
    [3] Xuke LIU, Xiaojing JIA, Min WANG, Qifeng QIAN, 2022: The Impact of Tibetan Plateau Snow Cover on the Summer Temperature in Central Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1103-1114.  doi: 10.1007/s00376-021-1011-4
    [4] Chen SHENG, Bian HE, Guoxiong WU, Yimin LIU, Shaoyu ZHANG, 2022: Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1050-1061.  doi: 10.1007/s00376-021-1218-4
    [5] Ming CHENG, Lei ZHONG, Yaoming MA, Han MA, Yaoxin CHANG, Peizhen LI, Meilin CHENG, Xian WANG, Nan GE, 2024: A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 435-448.  doi: 10.1007/s00376-023-3036-3
    [6] Jinghua CHEN, Xiaoqing WU, Chunsong LU, Yan YIN, 2022: Seasonal and Diurnal Variations of Cloud Systems over the Eastern Tibetan Plateau and East China: A Cloud-resolving Model Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1034-1049.  doi: 10.1007/s00376-021-0391-9
    [7] WANG Ning, ZHANG Yaocun, 2015: Connections between the Eurasian Teleconnection and Concurrent Variation of Upper-level Jets over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 336-348.  doi: 10.1007/s00376-014-4088-1
    [8] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [9] Wushan YING, Huiping YAN, Jing-Jia LUO, 2022: Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1561-1578.  doi: 10.1007/s00376-022-1389-7
    [10] Xiaying ZHU, Mingzhu YANG, Ge LIU, Yanju LIU, Weijing LI, Sulan NAN, Linhai SUN, 2023: A Precursory Signal of June–July Precipitation over the Yangtze River Basin: December–January Tropospheric Temperature over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1986-1997.  doi: 10.1007/s00376-022-2079-1
    [11] WANG Zhifu, QIAN Yongfu, 2009: The Relationship of Land-Ocean Thermal Anomaly Difference with Mei-yu and South China Sea Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 169-179.  doi: 10.1007/s00376-009-0169-y
    [12] Liu Liping, Feng Jinming, Chu Rongzhong, Zhou Yunjun, K. Ueno, 2002: The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 365-378.  doi: 10.1007/s00376-002-0028-6
    [13] WANG Chenghai, SHI Hongxia, HU Haolin, WANG Yi, XI Baike, 2015: Properties of Cloud and Precipitation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1504-1516.  doi: 10.1007/s00376-015-4254-0
    [14] Yuanchang DONG, Guoping LI, Xiaolin XIE, Long YANG, Peiwen ZHANG, Bo ZENG, 2024: Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 155-172.  doi: 10.1007/s00376-023-2275-7
    [15] Chunguang CUI, Xiquan DONG, Bin WANG, Hao YANG, 2021: Phase Two of the Integrative Monsoon Frontal Rainfall Experiment (IMFRE-II) over the Middle and Lower Reaches of the Yangtze River in 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 346-356.  doi: 10.1007/s00376-020-0262-9
    [16] HU Liang, Song YANG, LI Yaodong, GAO Shouting, 2010: Diurnal Variability of Precipitation Depth Over the Tibetan Plateau and its Surrounding Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 115-122.  doi: 10.1007/s00376-009-8193-5
    [17] Yilun CHEN, Aoqi ZHANG, Yunfei FU, Shumin CHEN, Weibiao LI, 2021: Morphological Characteristics of Precipitation Areas over the Tibetan Plateau Measured by TRMM PR, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 677-689.  doi: 10.1007/s00376-020-0233-1
    [18] GAO Rong, WEI Zhigang, DONG Wenjie, ZHONG Hailing, 2005: Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 238-245.  doi: 10.1007/BF02918513
    [19] Li Liming, Huang Feng, Chi Dongyan, Liu Shikuo, Wang Zhanggui, 2002: Thermal Effects of the Tibetan Plateau on Rossby Waves from the Diabatic Quasi-Geostrophic Equations of Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 901-913.  doi: 10.1007/s00376-002-0054-4
    [20] Yang ZHAO, Xiangde XU, Bin CHEN, Yinjun Wang, 2016: The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1343-1350.  doi: 10.1007/s00376-016-6118-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2002
Manuscript revised: 10 July 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Wave Train Characteristics of Teleconnection Caused by the Thermal Anomaly of the Underlying Surface of the Tibetan Plateau. Part Ⅰ: Data Analysis

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Chinese Academy of Meteorological Sciences, Beijing 100081

Abstract: The effect of the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous winter and spring on the precipitation over the middle and lower reaches of the Yangtze River (MRYR) in the subsequent summer was investigated. Through data analysis, the influence of" strong signal" features of the three-dimensional thermal anomaly of the Plateau upon the precipitation anomaly over MRYR in the subsequent summer was revealed. This feature of the signal shows that from 0 cm to 320 cm under the surface of the ground, the soil temperature anomalies of the Tibetan Plateau manifest out of phase distribution in flood years and drought years over MRYR. In flood years over MRYR, there is a positive soil temperature anomaly in the region of the southern Tibetan Plateau (to the south of 30°N) and a negative anomaly in the region of the middle and northern Tibetan Plateau (to the north of 30°N), while in drought years the distribution of the soil temperature anomaly is opposite to the one in flood years. The maximum value of the soil temperature anomaly lies in the levels between 40 cm and 160 cm under the surface of the ground. Meanwhile, the data analysis also shows that the general circulation in the Northern Hemisphere may respond to the thermal anomaly of the Tibetan Plateau and form the propagation of a low frequency wave train with a seasonal time scale, and this wave train may affect the precipitation over MRYR in the subsequent summer.Analyses reveal that the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous winter and spring is one of the key influencing factors for the subsequent summer precipitation over MRYR.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return