Advanced Search
Article Contents

The Spring Monsoon in South China and Its Relationship to Large-Scale Circulation Features


doi: 10.1007/s00376-002-0005-0

  • In this paper, the authors define the spring monsoon in South China, and study the climatology and the interannual variation through analysis of the precipitation and the related atmospheric circulation, as revealed by the NCEP/NCAR reanalysis data. The results indicate that the spring monsoon season in South China occurs climatologically in April and May, which is supported by both seasonal and interannual variation of the atmospheric circulation and precipitation. The related atmospheric circulation is different from that during the East Asian summer or winter monsoon season. The interannual variation of the spring monsoon rainfall in South China relates primarily to the anomalous circulation over the North Pacific, which is linked with the westerly jet over North Asia and with the polar vortex. It is also connected with sea surface temperature anomalies in the Pacific. Changes in the Asian tropical atmospheric circulation has little influence on the spring monsoon in South China according to this research.
  • [1] CHEN Wei, LU Riyu, 2014: The Interannual Variation in Monthly Temperature over Northeast China during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 515-524.  doi: 10.1007/s00376-013-3102-3
    [2] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [3] ZHANG Dingyuan, LIAO Hong, WANG Yuesi, 2014: Simulated Spatial Distribution and Seasonal Variation of Atmospheric Methane over China: Contributions from Key Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 283-292.  doi: 10.1007/s00376-013-3018-y
    [4] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [5] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [6] GAO Jianyun, Tim LI, 2012: Interannual Variation of Multiple Tropical Cyclone Events in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1279-1291.  doi: 10.1007/s00376-012-1031-1
    [7] Qian Yongfu, Zhang Qiong, Yao Yonghong, Zhang Xuehong, 2002: Seasonal Variation and Heat Preference of the South Asia High, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 821-836.  doi: 10.1007/s00376-002-0047-3
    [8] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [9] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [10] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [11] LI Jiawei, HAN Zhiwei, 2012: A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 101-117.  doi: 10.1007/s00376-011-0234-1
    [12] Pratima GUPTA, Shalendra Pratap SINGH, Ashok JANGID, Ranjit KUMAR, 2017: Characterization of Black Carbon in the Ambient Air of Agra, India: Seasonal Variation and Meteorological Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1082-1094.  doi: 10.1007/s00376-017-6234-z
    [13] LI Qiang, ZHANG Renhe, 2012: Seasonal Variation of Climatological Bypassing Flows around the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1100-1110.  doi: 10.1007/s00376-012-1154-4
    [14] Peng Yongqing, Yan Shaojin, 1994: Seasonal Variation Features of Western North Pacific Tropical Cyclone Tracks with Their Predictability, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 463-469.  doi: 10.1007/BF02658167
    [15] Kairan YING, Jing PENG, Li DAN, Xiaogu ZHENG, 2022: Ocean–atmosphere Teleconnections Play a Key Role in the Interannual Variability of Seasonal Gross Primary Production in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1329-1342.  doi: 10.1007/s00376-021-1226-4
    [16] KUANG Xueyuan, ZHANG Yaocun, 2005: Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 831-840.  doi: 10.1007/BF02918683
    [17] WU Zhiwei, LI Jianping, 2008: Prediction of the Asian-Australian Monsoon Interannual Variations with the Grid-Point Atmospheric Model of IAP LASG (GAMIL), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 387-394.  doi: 0.1007/s00376-008-0387-8
    [18] LI Wei, CHEN Longxun, 2003: Characteristics of the Seasonal Variation of the Surface Total Heating over the Tibetan Plateau and Its Surrounding Area in Summer 1998 and Its Relationship with the Convection over the Subtropical Area of the Western Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 343-348.  doi: 10.1007/BF02690792
    [19] Bian Jianchun, Chen Hongbin, Zhao Yanliang, Lü Daren, 2002: Variation Features of Total Atmospheric Ozone in Beijing and Kunming Based on Dobson and TOMS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 279-286.  doi: 10.1007/s00376-002-0022-z
    [20] WANG Zaizhi, WU Guoxiong, WU Tongwen, YU Rucong, 2004: Simulation of Asian Monsoon Seasonal Variations with Climate Model R42L9/LASG, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 879-889.  doi: 10.1007/BF02915590

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2002
Manuscript revised: 10 July 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Spring Monsoon in South China and Its Relationship to Large-Scale Circulation Features

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this paper, the authors define the spring monsoon in South China, and study the climatology and the interannual variation through analysis of the precipitation and the related atmospheric circulation, as revealed by the NCEP/NCAR reanalysis data. The results indicate that the spring monsoon season in South China occurs climatologically in April and May, which is supported by both seasonal and interannual variation of the atmospheric circulation and precipitation. The related atmospheric circulation is different from that during the East Asian summer or winter monsoon season. The interannual variation of the spring monsoon rainfall in South China relates primarily to the anomalous circulation over the North Pacific, which is linked with the westerly jet over North Asia and with the polar vortex. It is also connected with sea surface temperature anomalies in the Pacific. Changes in the Asian tropical atmospheric circulation has little influence on the spring monsoon in South China according to this research.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return