Advanced Search
Article Contents

Ability of NCAR RegCM2 in Reproducing the Dominant Physical Processes during the Anomalous Rainfall Episodes in the Summer of 1991 over the Yangtze-Huaihe Valley


doi: 10.1007/s00376-002-0019-7

  • The excessively torrential rainfall over the Yangtze-Huaihe valley during the summer of 1991 is simulated with an updated version of the second generation NCAR regional climate model (RegCM2) as a case factors contributing to the generation of the anomalous rainfall. This simulation is driven by large-scale atmospheric lateral boundary conditions derived from the European Center for Medium Range Weather Forecast (ECMWF) analysis. The simulation period is May to August 1991. The model domain covers East Asia and its adjacent oceanic regions. The model resolution is 60 km × 60 km in the horizontal and 23 layers in the vertical. The model can reasonably reproduce the daily precipitation events over East Asia for the summer of 1991, especially in the Yangtze-Huaihe valley where the anomalous rainfall occurred. The spatial and temporal structure of some important physical variables and processes related to the generation of the anomalous rainfall are analyzed. The time evolution of simulated upward vertical motion and horizontal convergence agrees with the five rainfall episodes over this subregion. The water vapor feeding the rainfall is mostly transported by the horizontal atmospheric motions from outside of the region rather than from local sources. The subtropical high over the western Pacific Ocean controls the progress and retreat of the summer monsoon over East Asia, and the RegCM2 can simulate the northward migration and southward retreat of subtropical high over the western Pacific Ocean. Furthermore, the model can represent the daily variation of the low level jet, which is crucial in the water vapor transport to the Yangtze-Huaihe valley.
  • [1] Yan HUANG, William L. CHAMEIDES, Qian TAN, Robert E. DICKINSON, 2008: Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 946-959.  doi: 10.1007/s00376-008-0946-z
    [2] XIN Xiaoge, Zhaoxin LI, YU Rucong, ZHOU Tianjun, 2008: Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 555-562.  doi: 10.1007/s00376-008-0555-x
    [3] DING Yuguo, CHENG Bingyan, JIANG Zhihong, 2008: A Newly-Discovered GPD-GEV Relationship Together with Comparing Their Models of Extreme Precipitation in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 507-516.  doi: 10.1007/s00376-008-0507-5
    [4] Wu Renguang, Chen Lieting, 1998: Decadal Variation of Summer Rainfall in the Yangtze-Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 510-522.  doi: 10.1007/s00376-998-0028-2
    [5] Huijie WANG, Jianhua SUN, Shenming FU, Yuanchun ZHANG, 2021: Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze–Huaihe River Valley during 1981–2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2167-2182.  doi: 10.1007/s00376-021-1194-8
    [6] Yuanchun ZHANG, Jianhua SUN, Ruyi YANG, Ruoyun MA, 2022: Initiation and Evolution of Long-Lived Eastward-Propagating Mesoscale Convective Systems over the Second-Step Terrain along Yangtze-Huaihe River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 763-781.  doi: 10.1007/s00376-022-1303-3
    [7] Hemin SUN, Guojie WANG, Xiucang LI, Jing CHEN, Buda SU, Tong JIANG, 2017: Regional Frequency Analysis of Observed Sub-Daily Rainfall Maxima over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 209-225.  doi: 10.1007/s00376-016-6086-y
    [8] Liu Huaqiang, Qian Yongfu, 1999: Numerical Simulations of Intense Meiyu Rainfall in 1991 over the Changjiang and Huaihe River Valleys by a Regional Climate Model with p-б Incorporated Coordinate System, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 395-404.  doi: 10.1007/s00376-999-0018-z
    [9] Wei Helin, Wang Wei-Chyung, 1998: A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 489-509.  doi: 10.1007/s00376-998-0027-3
    [10] Jin Long, LuoYing, Lin Zhenshan, 1997: Comparison of Long-Term Forecasting of June-August Rainfall over Changjiang-Huaihe Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 87-92.  doi: 10.1007/s00376-997-0047-4
    [11] XUAN Shouli, ZHANG Qingyun, SUN Shuqing, 2011: Anomalous Midsummer Rainfall in Yangtze River-Huaihe River Valleys and Its Association with the East Asia Westerly Jet, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 387-397.  doi: 10.1007/s00376-010-0111
    [12] GUO Yufu, WANG Jia, ZHAO Yan, 2004: Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivety Experiments with Different SSTA, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 23-33.  doi: 10.1007/BF02915677
    [13] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [14] TANG Yanbing, ZHAO Lu, GAO Kun, 2009: Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1169-1180.  doi: 10.1007/s00376-009-8006-x
    [15] LI Fang, LIN Zhongda, 2015: Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 497-504.  doi: 10.1007/s00376-014-4073-8
    [16] Lixia ZHANG, Dan ZHAO, Tianjun ZHOU, Dongdong PENG, Chan XIAO, 2021: Moisture Origins and Transport Processes for the 2020 Yangtze River Valley Record-Breaking Mei-yu Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2125-2136.  doi: 10.1007/s00376-021-1097-8
    [17] FENG Lei, ZHANG Yaocun, 2007: Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 881-892.  doi: 10.1007/s00376-007-0881-4
    [18] WANG Xin, WANG Dongxiao, ZHOU Wen, LI Chongyin, 2012: Interdecadal Modulation of the Influence of La Nina Events on Mei-yu Rainfall over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 157-168.  doi: 10.1007/s00376-011-1021-8
    [19] HONG Jieli, LIU Yimin, 2012: Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 755-768.  doi: 10.1007/s00376-012-1217-6
    [20] Sun Bomin, Sun Shuqing, 1994: The Analysis on the Features of the Atmospheric Circulation in Preceding Winters for the Summer Drought and Flooding in the Yangtze and Huaihe River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 79-90.  doi: 10.1007/BF02656997

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2002
Manuscript revised: 10 March 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Ability of NCAR RegCM2 in Reproducing the Dominant Physical Processes during the Anomalous Rainfall Episodes in the Summer of 1991 over the Yangtze-Huaihe Valley

  • 1. National Climate Center, Beijing 100081,National Climate Center, Beijing 100081,National Climate Center, Beijing 100081

Abstract: The excessively torrential rainfall over the Yangtze-Huaihe valley during the summer of 1991 is simulated with an updated version of the second generation NCAR regional climate model (RegCM2) as a case factors contributing to the generation of the anomalous rainfall. This simulation is driven by large-scale atmospheric lateral boundary conditions derived from the European Center for Medium Range Weather Forecast (ECMWF) analysis. The simulation period is May to August 1991. The model domain covers East Asia and its adjacent oceanic regions. The model resolution is 60 km × 60 km in the horizontal and 23 layers in the vertical. The model can reasonably reproduce the daily precipitation events over East Asia for the summer of 1991, especially in the Yangtze-Huaihe valley where the anomalous rainfall occurred. The spatial and temporal structure of some important physical variables and processes related to the generation of the anomalous rainfall are analyzed. The time evolution of simulated upward vertical motion and horizontal convergence agrees with the five rainfall episodes over this subregion. The water vapor feeding the rainfall is mostly transported by the horizontal atmospheric motions from outside of the region rather than from local sources. The subtropical high over the western Pacific Ocean controls the progress and retreat of the summer monsoon over East Asia, and the RegCM2 can simulate the northward migration and southward retreat of subtropical high over the western Pacific Ocean. Furthermore, the model can represent the daily variation of the low level jet, which is crucial in the water vapor transport to the Yangtze-Huaihe valley.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return