Advanced Search
Article Contents

Application of Linear Thermodynamics to the Atmospheric System.Part Ⅱ: Exemplification of Linear Phenomenological Relations in the Atmospheric System


doi: 10.1007/s00376-002-0043-7

  • The linear phenomenological relations in the atmospheric boundary layer are proved indirectly usingobservational facts to combine linear thermodynamic theory and similarity theory in the boundary layer.Furthermore, it is proved that the turbulent transport coefficients are in proportion to the correspondinglinear phenomenological coefficients. But the experimental facts show that the linear phenomenological rela-tions are not tenable in the atmospheric mixing layer because the turbalent transport process is an intensenon-linear process in the mixing layer. Hence the convection boundary layer is a thermodynamic state in anon-linear region far from the equilibrium state. The geostrophic wind is a special cross-coupling phenom-enon between the dynamic process and the thermodynamic process in the atmospheric system. It is a practi-cal exemplification ofa cross-coupling phenomenon in the atmospheric system.
  • [1] Hu Yinqiao, 2002: Application of Linear Thermodynamics to the Atmospheric System. Part Ⅰ: Linear Phenomenological Relations and Thermodynamic Property of the Atmospheric System, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 448-458.  doi: 10.1007/s00376-002-0078-9
    [2] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [3] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [4] LIU Shuhua, YUE Xu, HU Fei, LIU Huizhi, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 245-259.  doi: 10.1007/BF02915711
    [5] CHEN Jinbei, HU Yinqiao, ZHANG Lei, 2007: Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 89-100.  doi: 10.1007/s00376-007-0089-7
    [6] Zexu Luo, Xiaoquan Song, Jiaping Yin, Zhichao Bu, Yubao Chen, Yongtao Yu, Zhenlu Zhang, 2024: Comparison and Verification of Coherent Doppler Wind Lidar and Radiosonde in Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3240-9
    [7] Liu Shikuo, Huang Wei, Rong Pingping, 1992: Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 147-156.  doi: 10.1007/BF02657505
    [8] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [9] Zhao Bolin, Zhen Jinming, Hu Chengda, Du Jinlin, Zhu Yuanjing, Zhang Chengxiang, 1992: Study on Clouds and Marine Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 383-396.  doi: 10.1007/BF02677072
    [10] Xu Yinzi, 1988: THE WIND IN THE BAROCLINIC BOUNDARY LAYER WITH THREE SUBLAYERS INCORPORATING THE WEAK NON-LINEAR EFFECT, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 483-497.  doi: 10.1007/BF02656793
    [11] Li Jun, Zhou Fengxian, Zeng Qingcun, 1994: Simultaneous Non-linear Retrieval of Atmospheric Temperature and Absorbing Constituent Profiles from Satellite Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 128-138.  doi: 10.1007/BF02666541
    [12] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [13] You Ronggao, Hong Zhongxiang, Lu Weixiu, Zhao Deshan, Kong Qinxin, Zhu Wenqin, 1985: VARIATIONS OF ATMOSPHERIC AEROSOL CONCENTRATION AND SIZE DISTRIBUTION WITH TIME AND ALTITUDE IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 243-250.  doi: 10.1007/BF03179756
    [14] MA Yaoming, Massimo MENENTI, Reinder FEDDES, 2010: Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 328-336.  doi: 10.1007/s00376-009-9024-4
    [15] Shen YAN, Jie XIANG, Huadong DU, 2019: Determining Atmospheric Boundary Layer Height with the Numerical Differentiation Method Using Bending Angle Data from COSMIC, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 303-312.  doi: 10.1007/s00376-018-7308-2
    [16] CHENG Xue-Ling, HUANG Jian, WU Lin, ZENG Qing-Cun, 2015: Structures and Characteristics of the Windy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 772-782.  doi: 10.1007/s00376-014-4228-7
    [17] Jiang Weimei, Wang Xuemei, 1996: A 2-D Non-local Closure Model for Atmospheric Boundary Layer Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 169-182.  doi: 10.1007/BF02656860
    [18] Lin Wantao, Ji Zhongzhen, Wang Bin, 2002: A Comparative Analysis of Computational Stability for Linear and Non-Linear Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 699-704.  doi: 10.1007/s00376-002-0009-9
    [19] Y.L. McHall, 1993: Energetics Constraint for Linear Disturbances Development, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 273-286.  doi: 10.1007/BF02658133
    [20] Li Zhijin, Ji Liren, 1994: Efficient Anomalous Forcings for Linear Problems, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 436-446.  doi: 10.1007/BF02658164

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2002
Manuscript revised: 10 September 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Application of Linear Thermodynamics to the Atmospheric System.Part Ⅱ: Exemplification of Linear Phenomenological Relations in the Atmospheric System

  • 1. Coldand Aril Re gion s Environmenl and Engineering lnstitle, Chinese Academy of Sciences Lanzhou 730000;Resource Environment College of Lanzhou Unicerity, Lanzhou 730000

Abstract: The linear phenomenological relations in the atmospheric boundary layer are proved indirectly usingobservational facts to combine linear thermodynamic theory and similarity theory in the boundary layer.Furthermore, it is proved that the turbulent transport coefficients are in proportion to the correspondinglinear phenomenological coefficients. But the experimental facts show that the linear phenomenological rela-tions are not tenable in the atmospheric mixing layer because the turbalent transport process is an intensenon-linear process in the mixing layer. Hence the convection boundary layer is a thermodynamic state in anon-linear region far from the equilibrium state. The geostrophic wind is a special cross-coupling phenom-enon between the dynamic process and the thermodynamic process in the atmospheric system. It is a practi-cal exemplification ofa cross-coupling phenomenon in the atmospheric system.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return