Advanced Search
Article Contents

A Preliminary Study on the Global Land Annual Precipitation Associated with ENSO during 1948-2000


doi: 10.1007/s00376-002-0060-6

  • The global land monthly precipitation data (PREC / L) are used to investigate the relation between the global land annual precipitation and ENSO during 1948-2000, and the results of composite analysis are tested with Monte Carlo simulations. Results indicate that the global land annual precipitation was significantly reduced in large scale areas in warm event years;, the areas were the equatorial West Pacific, North China;equatorial Central America; North Bengal Bay and Nepal; East Australia; West India and South Pakistan;the district east of the Lena River; West Europe; and Wilkes Land of Antarctica. In contrast to this, the areas where precipitation increased in warm event years were less, and mainly in Chile and Argentina of South America; Somali, Kenya, and Tanzania of East Africa; Turkey, Iraq, and Iran of the Middle East; Libya and Nigeria of North Africa; Namibia of Southwest Africa; and Botswana and Zimbabwe of southern Africa. Statistical tests show that in warm event years, the area where the land annual precipitation was reduced was larger than the area where the annual precipitation increased, and the reduction in precipitation was more significant than the increase. The results in this paper are compared with previous studies. It is also pointed out that the interdecadal change of ENSO had no significant effect on the interdecadal variation of precipitation in the above regions. However, the warm events of El Nino affected the droughts in East Australia and North China more after the 1980s than before.
  • [1] Kaiming HU, Yingxue LIU, Gang HUANG, Zhuoqi HE, Shang-Min LONG, 2020: Contributions to the Interannual Summer Rainfall Variability in the Mountainous Area of Central China and Their Decadal Changes, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 259-268.  doi: 10.1007/s00376-019-9099-5
    [2] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [3] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [4] Jingrui YAN, Wenjun ZHANG, Suqiong HU, Feng JIANG, 2024: Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3196-1
    [5] NING Liang, QIAN Yongfu, 2009: Interdecadal Change in Extreme Precipitation over South China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 109-118.  doi: 10.1007/s00376-009-0109-x
    [6] Peng HU, Wen CHEN, Shangfeng CHEN, Lin WANG, Yuyun LIU, 2022: The Weakening Relationship between ENSO and the South China Sea Summer Monsoon Onset in Recent Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 443-455.  doi: 10.1007/s00376-021-1208-6
    [7] Weijie FENG, Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, Oscar Y. W. ZHANG, 2022: An Extreme Drought over South China in 2020/21 Concurrent with an Unprecedented Warm Northwest Pacific and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1637-1649.  doi: 10.1007/s00376-022-1456-0
    [8] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x
    [9] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [10] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8
    [11] Yuanhai FU, Zhongda LIN, Tao WANG, 2021: Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 221-236.  doi: 10.1007/s00376-020-0147-y
    [12] Yadi LI, Xichen LI, Juan FENG, Yi ZHOU, Wenzhu WANG, Yurong HOU, 2024: Uncertainties of ENSO-related Regional Hadley Circulation Anomalies within Eight Reanalysis Datasets, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 115-140.  doi: 10.1007/s00376-023-3047-0
    [13] BIAN Lingen, LIN Xiang, 2012: Interdecadal Change in the Antarctic Circumpolar Wave during 1951--2010, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 464-470.  doi: 10.1007/s00376-011-1143-z
    [14] ZHOU Botao, WANG Huijun, 2008: Interdecadal Change in the Connection Between Hadley Circulation and Winter Temperature in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 24-30.  doi: 10.1007/s00376-008-0024-6
    [15] Cen WANG, Baohua REN, Gen LI, Jianqiu ZHENG, Linwei JIANG, Di XU, 2023: An Interdecadal Change in the Influence of the NAO on Atlantic-Induced Arctic Daily Warming around the Mid-1980s, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1285-1297.  doi: 10.1007/s00376-022-2218-8
    [16] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [17] KANG Xianbiao, HUANG Ronghui, WANG Zhanggui, ZHANG Rong-Hua, 2014: Sensitivity of ENSO Variability to Pacific Freshwater Flux Adjustment in the Community Earth System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1009-1021.  doi: 10.1007/s00376-014-3232-2
    [18] Fei ZHENG, Jianping LI, Ruiqiang DING, 2017: Influence of the Preceding Austral Summer Southern Hemisphere Annular Mode on the Amplitude of ENSO Decay, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1358-1379.  doi: 10.1007/s00376-017-6339-4
    [19] Shangfeng CHEN, Linye SONG, Wen CHEN, 2019: Interdecadal Modulation of AMO on the Winter North Pacific Oscillation−Following Winter ENSO Relationship, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1393-1403.  doi: 10.1007/s00376-019-9090-1
    [20] Silvia Alessio, Arnaldo Longhetto, Luo Meixia, 1999: The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 1-23.  doi: 10.1007/s00376-999-0001-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2002
Manuscript revised: 10 November 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Preliminary Study on the Global Land Annual Precipitation Associated with ENSO during 1948-2000

  • 1. Nanjing Institute of Meteorology, Nanjing 210044,Nanjing Institute of Meteorology, Nanjing 210044,Nanjing Institute of Meteorology, Nanjing 210044

Abstract: The global land monthly precipitation data (PREC / L) are used to investigate the relation between the global land annual precipitation and ENSO during 1948-2000, and the results of composite analysis are tested with Monte Carlo simulations. Results indicate that the global land annual precipitation was significantly reduced in large scale areas in warm event years;, the areas were the equatorial West Pacific, North China;equatorial Central America; North Bengal Bay and Nepal; East Australia; West India and South Pakistan;the district east of the Lena River; West Europe; and Wilkes Land of Antarctica. In contrast to this, the areas where precipitation increased in warm event years were less, and mainly in Chile and Argentina of South America; Somali, Kenya, and Tanzania of East Africa; Turkey, Iraq, and Iran of the Middle East; Libya and Nigeria of North Africa; Namibia of Southwest Africa; and Botswana and Zimbabwe of southern Africa. Statistical tests show that in warm event years, the area where the land annual precipitation was reduced was larger than the area where the annual precipitation increased, and the reduction in precipitation was more significant than the increase. The results in this paper are compared with previous studies. It is also pointed out that the interdecadal change of ENSO had no significant effect on the interdecadal variation of precipitation in the above regions. However, the warm events of El Nino affected the droughts in East Australia and North China more after the 1980s than before.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return