Advanced Search
Article Contents

Indices of the Summertime Western North Pacific Subtropical High


doi: 10.1007/s00376-002-0061-5

  • By averaging June-July-August (JJA) mean geopotential height anomalies at 850 hPa over the specified areas, the author proposes two innovative and succinct parameters to objectively define the zonal and meridional displacements of the western North Pacific subtropical high (WNPSH) in summer, respectively.Thus, these two indices and the present results may provide a basis for validating atmospheric general circulation models simulating the WNPSH. For the zonal index, the specified area is the west edge (110°-150°E,10°-30°N) of the WNPSH. For the meridional index, the specified area is the northwest edge (120°-150°E,30°-40°N) of the WNPSH. The interannual variations of these two indices are found to be independent. The results from a composite analysis based on the meridional index are in good agreement with previous studies based on case analyses.The two indices are compared with the existing indices announced by the National Climate Center (NCC) in China, on the interannual timescale. Despite slight differences, the interannual variations of the presented indices are basically similar to those of the NCC indices, and thus the circulation and precipitation associated with the present indices exhibit similar features to those associated with the NCC indices.Furthermore, an analysis of the differences between the associations of the present indices and the NCC indices shows that the presented indices are better than the NCC indices. An important result is that the zonal index is related to a more outstanding anomaly of precipitation, especially in East Asia and the Philippine Sea,both based on the presented indices and the NCC indices.The two indices can also be used to describe the seasonal march of the WNPSH during summer,namely, the poleward and eastward shifts. It is found that climatologically, the WNPSH shifts poleward and eastward rapidly in middle July, but the amplitudes of the poleward and eastward shifts are more remarkable in the summers when the WNPSH is located poleward and eastward in average.
  • [1] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [2] SONG Yaoming, GUO Weidong, ZHANG Yaocun, 2009: Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 319-326.  doi: 10.1007/s00376-009-0319-2
    [3] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [4] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [5] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [6] YUAN Yuan, C. L. Johnny CHAN, ZHOU Wen, LI Chongyin, 2008: Decadal and Interannual Variability of the Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 856-866.  doi: 10.1007/s00376-008-0856-0
    [7] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [8] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [9] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [10] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [11] Hai ZHI, Rong-Hua ZHANG, Pengfei LIN, Peng YU, 2019: Interannual Salinity Variability in the Tropical Pacific in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 378-396.  doi: 10.1007/s00376-018-7309-1
    [12] HU Ruijin, LIU Qinyu, WANG Qi, J. Stuart GODFREY, MENG Xiangfeng, 2005: The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 220-229.  doi: 10.1007/BF02918511
    [13] YANG Junli, WANG Bin, GUO Yufu, WAN Hui, JI Zhongzhen, 2007: Comparison Between GAMIL, and CAM2 on Interannual Variability Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 82-88.  doi: 10.1007/s00376-007-0082-1
    [14] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [15] Wu Aiming, Ni Yunqi, 1997: The Influence of Tibetan Plateau on the Interannual Variability of Atmospheric Circulation over Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 69-80.  doi: 10.1007/s00376-997-0045-6
    [16] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [17] WangHuijun, Xue Feng, Bi Xunqiang, 1997: The Interannual Variability and Predictability in a Global Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 554-562.  doi: 10.1007/s00376-997-0073-2
    [18] Xiaoxuan ZHAO, Riyu LU, 2020: Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 173-186.  doi: 10.1007/s00376-019-9103-0
    [19] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [20] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2002
Manuscript revised: 10 November 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Indices of the Summertime Western North Pacific Subtropical High

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: By averaging June-July-August (JJA) mean geopotential height anomalies at 850 hPa over the specified areas, the author proposes two innovative and succinct parameters to objectively define the zonal and meridional displacements of the western North Pacific subtropical high (WNPSH) in summer, respectively.Thus, these two indices and the present results may provide a basis for validating atmospheric general circulation models simulating the WNPSH. For the zonal index, the specified area is the west edge (110°-150°E,10°-30°N) of the WNPSH. For the meridional index, the specified area is the northwest edge (120°-150°E,30°-40°N) of the WNPSH. The interannual variations of these two indices are found to be independent. The results from a composite analysis based on the meridional index are in good agreement with previous studies based on case analyses.The two indices are compared with the existing indices announced by the National Climate Center (NCC) in China, on the interannual timescale. Despite slight differences, the interannual variations of the presented indices are basically similar to those of the NCC indices, and thus the circulation and precipitation associated with the present indices exhibit similar features to those associated with the NCC indices.Furthermore, an analysis of the differences between the associations of the present indices and the NCC indices shows that the presented indices are better than the NCC indices. An important result is that the zonal index is related to a more outstanding anomaly of precipitation, especially in East Asia and the Philippine Sea,both based on the presented indices and the NCC indices.The two indices can also be used to describe the seasonal march of the WNPSH during summer,namely, the poleward and eastward shifts. It is found that climatologically, the WNPSH shifts poleward and eastward rapidly in middle July, but the amplitudes of the poleward and eastward shifts are more remarkable in the summers when the WNPSH is located poleward and eastward in average.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return