Advanced Search
Article Contents

The Propagation and Transport Effect of Planetary Waves in the Northern Hemisphere Winter


doi: 10.1007/s00376-002-0069-x

  • Based on the transformed Eulerian-mean equations, the dynamics of planetary waves are discussed.Both observations and simulations indicate that in the Northern Hemisphere winter there are two waveguides for the meridional propagation of quasi-stationary planetary waves. One is the high latitude waveguide, and the other is the low latitude waveguide. These results are in good agreement with theoretical analysis. Moreover, the convergence of EP flux indicates that the stratospheric sudden warming is the result of anomalous planetary wave propagation along the high latitude waveguide and its interaction with mean flows. The tropical quasi-biennial oscillation (QBO) winds, which represent one significant variation of zonal flow in the lower stratosphere at low latitudes, can influence the low latitude waveguide of planetary wave propagation. Our results of the wave-mean flow coupled model show that these tropical winds can also modulate the high latitude waveguide significantly in the case of wave-mean flow interaction.The transport effect of planetary waves on ozone is also analyzed. The residual mean circulation forced by planetary waves indicates that there is strong transport circulation for the dissipative planetary waves.Under the forcing of northward eddy heat transport, a positive transport circulation can result which rises at low latitudes and sinks at high latitudes. At the same time, the modification of planetary wave propagation by the equatorial QBO winds is shown to have an important impact on the transport circulation. The model results indicate that the meridional transport is amplified during the easterly phase of the QBO. This mechanism may explain the interannual variability of ozone in the stratosphere at high latitudes.
  • [1] Lu Peisheng, 1992: The Structure and Propagation of Stationary Planetary Wave Packet in the Barotropic Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 157-166.  doi: 10.1007/BF02657506
    [2] Zeng Qingcun, Zhang Minghua, 2000: Wave-Mean Flow Interaction: the Role of Continuous-Spectrum Disturbances, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 1-17.  doi: 10.1007/s00376-000-0039-0
    [3] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1992: The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean Flow Part Two: Wave Breaking and Critical Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 29-36.  doi: 10.1007/BF02656927
    [4] Huang Ronghui, 1984: THE CHARACTERISTICS OF THE FORCED STATIONARY PLANETARY WAVE PROPAGATIONS IN SUMMER NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 84-104.  doi: 10.1007/BF03187619
    [5] Zhu Xun, 1987: ON GRAVITY WAVE-MEAN FLOW INTERACTIONS IN A THREE DIMENSIONAL STRATIFIED ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 287-299.  doi: 10.1007/BF02663599
    [6] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part I: Orographic Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 211-224.  doi: 10.1007/BF02658095
    [7] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part II: Thermal Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 225-236.  doi: 10.1007/BF02658096
    [8] Yong. L. McHall, 1992: Nonlinear Planetary Wave Instability and Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 173-190.  doi: 10.1007/BF02657508
    [9] Zhang Ren, 1996: Characteristics of Soliton with Dynamic Constraints on its Existence / Propagation in Tropical Easterly Wave, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 325-339.  doi: 10.1007/BF02656850
    [10] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1991: The Propagation of Inertia-Gravity Waves and Their Influence on Mean Zonal Flow, Part One: the Propagation of Inertia-Gravity Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 431-446.  doi: 10.1007/BF02919266
    [11] Luo Dehai, 1999: Nonlinear Three-Wave Interaction among Barotropic Rossby Waves in a Large-scale Forced Barotropic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 451-466.  doi: 10.1007/s00376-999-0023-2
    [12] LI Qian, Hans-F. GRAF, CUI Xuefeng, 2011: The Role of Stationary and Transient Planetary Waves in the Maintenance of Stratospheric Polar Vortex Regimes in Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 187-194.  doi: 10.1007/s00376-010-9163-7
    [13] ZUO Qunjie, GAO Shouting, Lü Daren, 2013: The Propagation of Wave Packets and Its Relationship with the Subtropical Jet over Southern China in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 67-76.  doi: 10.1007/s00376-012-1197-6
    [14] Li Guoqing, Robin Kung, Richard L. Pfeffer, 1993: Some Effects of Rotation Rate on Planetary-Scale Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 296-306.  doi: 10.1007/BF02658135
    [15] LUO Dehai, LIU Jinting, LI Jianping, 2010: Interaction between Planetary-Scale Diffluent Flow and Synoptic-Scale Waves During the Life Cycle of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 807-831.  doi: 10.1007/s00376-009-9074-7
    [16] X.L. Wang, H.L. Rui, A. Leetmaa, 1996: The Dynamics of ENSO Anomaly as Revealed in Ensemble Climate Simulations-Impact of Mean Stationary Wave, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 425-444.  doi: 10.1007/BF03342035
    [17] Debashis NATH, Wen CHEN, 2016: Impact of Planetary Wave Reflection on Tropospheric Blocking over the Urals-Siberia Region in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 309-318.  doi: 10.1007/s00376-015-5052-4
    [18] Debashis NATH, CHEN Wen, WANG Lin, and MA Yin, 2014: Planetary Wave Reflection and Its Impact on Tropospheric Cold Weather over Asia during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 851-862.  doi: 10.1007/s00376-013-3195-8
    [19] Luo Dehai, 1998: Topographically Forced Three-Wave Quasi-Resonant and Non-Resonant Interactions among Barotropic Rossby Waves on an Infinite Beta-Plane, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 83-98.  doi: 10.1007/s00376-998-0020-x
    [20] Xiaofan Li, Han-Ru Cho, 1997: Development and Propagation of Equatorial Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 323-338.  doi: 10.1007/s00376-997-0053-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2002
Manuscript revised: 10 November 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Propagation and Transport Effect of Planetary Waves in the Northern Hemisphere Winter

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080

Abstract: Based on the transformed Eulerian-mean equations, the dynamics of planetary waves are discussed.Both observations and simulations indicate that in the Northern Hemisphere winter there are two waveguides for the meridional propagation of quasi-stationary planetary waves. One is the high latitude waveguide, and the other is the low latitude waveguide. These results are in good agreement with theoretical analysis. Moreover, the convergence of EP flux indicates that the stratospheric sudden warming is the result of anomalous planetary wave propagation along the high latitude waveguide and its interaction with mean flows. The tropical quasi-biennial oscillation (QBO) winds, which represent one significant variation of zonal flow in the lower stratosphere at low latitudes, can influence the low latitude waveguide of planetary wave propagation. Our results of the wave-mean flow coupled model show that these tropical winds can also modulate the high latitude waveguide significantly in the case of wave-mean flow interaction.The transport effect of planetary waves on ozone is also analyzed. The residual mean circulation forced by planetary waves indicates that there is strong transport circulation for the dissipative planetary waves.Under the forcing of northward eddy heat transport, a positive transport circulation can result which rises at low latitudes and sinks at high latitudes. At the same time, the modification of planetary wave propagation by the equatorial QBO winds is shown to have an important impact on the transport circulation. The model results indicate that the meridional transport is amplified during the easterly phase of the QBO. This mechanism may explain the interannual variability of ozone in the stratosphere at high latitudes.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return