Advanced Search
Article Contents

Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies


doi: 10.1007/s00376-002-0074-0

  • With the IAP / LASG GOALS model, the relationships between the floods in the Yangtze River valley and sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied.The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the summer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the effects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a major contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.
  • [1] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [2] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [3] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [4] ZHAO Xia, LI Jianping, ZHANG Wenjun, 2012: Summer Persistence Barrier of Sea Surface Temperature Anomalies in the Central Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1159-1173.  doi: 10.1007/s00376-012-1253-2
    [5] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [6] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [7] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [8] Liu Huaqiang, Qian Yongfu, 1999: Numerical Simulations of Intense Meiyu Rainfall in 1991 over the Changjiang and Huaihe River Valleys by a Regional Climate Model with p-б Incorporated Coordinate System, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 395-404.  doi: 10.1007/s00376-999-0018-z
    [9] Minmin WU, Rong-Hua ZHANG, Junya HU, Hai ZHI, 2024: Synergistic Interdecadal Evolution of Precipitation over Eastern China and the Pacific Decadal Oscillation during 1951–2015, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 53-72.  doi: 10.1007/s00376-023-3011-z
    [10] FENG Lei, ZHANG Yaocun, 2007: Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 881-892.  doi: 10.1007/s00376-007-0881-4
    [11] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [12] Xie Zhenghui, Dai Yongjiu, Zeng Qingcun, 1999: An Unsaturated Soil Water Flow Problem and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 183-196.  doi: 10.1007/BF02973081
    [13] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6
    [14] Jianjun LIU, Feimin ZHANG, Zhaoxia PU, 2017: Numerical Simulation of the Rapid Intensification of Hurricane Katrina (2005): Sensitivity to Boundary Layer Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 482-496.  doi: 10.1007/s00376-016-6209-5
    [15] PING Fan, GAO Shouting, WANG Huijun, 2003: A Comparative Study of the Numerical Simulation of the 1998 Summer Flood in China by Two Kinds of Cumulus Convective Parameterized Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 149-157.  doi: 10.1007/BF03342059
    [16] ZENG Zhihua, DUAN Yihong, LIANG Xudong, MA Leiming, Johnny Chung-leung CHAN, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 534-544.  doi: 10.1007/BF02918486
    [17] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [18] Zhang Yaocun, Qian Yongfu, 1999: Numerical Simulation of the Regional Ocean Circulation in the Coastal Areas of China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 443-450.  doi: 10.1007/s00376-999-0022-3
    [19] Song Yukuan, Chen Longxun, Dong Min, 1994: Numerical Simulation for the Impact of Deforestation on Climate in China and Its Neighboring Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 212-223.  doi: 10.1007/BF02666547
    [20] Cheng Anning, Chen Wen, Huang Ronghui, 1998: The Sensitivity of Numerical Simulation of the East Asian Monsoon to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 204-220.  doi: 10.1007/s00376-998-0040-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2002
Manuscript revised: 10 May 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

Abstract: With the IAP / LASG GOALS model, the relationships between the floods in the Yangtze River valley and sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied.The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the summer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the effects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a major contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return