Advanced Search
Article Contents

Application of Linear Thermodynamics to the Atmospheric System. Part Ⅰ: Linear Phenomenological Relations and Thermodynamic Property of the Atmospheric System


doi: 10.1007/s00376-002-0078-9

  • A series of thermodynamic property of the atmospheric system can be deducted, in accordance with re striction of the general thermodynamics theory or other nature principle to saddle on the phenomenological relation. The relationship between the turbulence transport coefficients of K turbulence close theory and the phenomenological coefficients are deduced using the linear thermodynamics of nonequilibrium state. A cross coupling between the heat transportation and the vapor transportation in the atmospheric system is proved. Even a turbulence intensity theorem is demonstrated. The distributional heterogeneity of velocity and potential temperature is the turbulence fountainhead and the turbulence intensity is proportional to the scalar product of velocity and potential temperature gradient in the non-compressed and isotropy turbulence atmosphere. More about an atmospheric vortex theorem is demonstrated. The shear of potential tem perature leads to a vortex movement or sundry circumfluence movement and the velocity vorticity equals to the vector product of velocity and potential temperature gradient. An application foreground of the linear thermodynamics is exhibited to the atmosphere system.
  • [1] Hu Yinqiao, 2002: Application of Linear Thermodynamics to the Atmospheric System.Part Ⅱ: Exemplification of Linear Phenomenological Relations in the Atmospheric System, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 767-776.  doi: 10.1007/s00376-002-0043-7
    [2] YUE Ping, ZHANG Qiang, WANG Runyuan, LI Yaohui, WANG Sheng, 2015: Turbulence Intensity and Turbulent Kinetic Energy Parameters over a Heterogeneous Terrain of Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1291-1302.  doi: 10.1007/s00376-015-4258-9
    [3] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [4] Li Jun, Zhou Fengxian, Zeng Qingcun, 1994: Simultaneous Non-linear Retrieval of Atmospheric Temperature and Absorbing Constituent Profiles from Satellite Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 128-138.  doi: 10.1007/BF02666541
    [5] Lin Wantao, Ji Zhongzhen, Wang Bin, 2002: A Comparative Analysis of Computational Stability for Linear and Non-Linear Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 699-704.  doi: 10.1007/s00376-002-0009-9
    [6] Y.L. McHall, 1993: Energetics Constraint for Linear Disturbances Development, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 273-286.  doi: 10.1007/BF02658133
    [7] Li Zhijin, Ji Liren, 1994: Efficient Anomalous Forcings for Linear Problems, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 436-446.  doi: 10.1007/BF02658164
    [8] Keon-Tae SOHN, H. Joe KWON, Ae-Sook SUH, 2003: Prediction of Typhoon Tracks Using Dynamic Linear Models, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 379-384.  doi: 10.1007/BF02690796
    [9] YUAN Zhuojian, JIAN Maoqiu, 2003: A Linear Diagnostic Equation for the Nonhydrostatic Vertical Motion W in Severe Storms, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 875-881.  doi: 10.1007/BF02915511
    [10] KE Zongjian, DONG Wenjie, ZHANG Peiqun, WANG Jin, ZHAO Tianbao, 2009: An Analysis of the Difference between the Multiple Linear Regression Approach and the Multimodel Ensemble Mean, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1157-1168.  doi: 10.1007/s00376-009-8024-8
    [11] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9
    [12] He Jianzhong, 1993: Linear Momentum Approximation and Frontogenesis Caused by Baroclinic Ekman Momentum Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 103-112.  doi: 10.1007/BF02656958
    [13] He Jianzhong, 1993: Topography and the Non-linear Rossby Wave in the Zonal Shear Basic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 233-242.  doi: 10.1007/BF02919146
    [14] Li Xin, Hu Fei, Pu Yifen, M.H.Al-Jiboori, Hu Zhaoxia, Hong Zhongxiang, 2002: Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 687-698.  doi: 10.1007/s00376-002-0008-x
    [15] Liu Shida, Liu Shikuo, Xin Guojun, Liang Fuming, 1994: The Theoretical Model of Atmospheric Turbulence Spectrum in Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 408-414.  doi: 10.1007/BF02658160
    [16] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [17] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [18] Chen Wuhe, Situ Da, Zhong Xubin, 1998: Atmospheric Refractive Turbulence Effect on Diffraction-Limited Infrared Coherent Lidar, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 124-134.  doi: 10.1007/s00376-998-0024-6
    [19] Wanli LI, Xiushu QIE, Shenming FU, Debin SU, Yonghai SHEN, 2016: Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 85-100.  doi: 10.1007/s00376-015-4170-3
    [20] Qin XU, Binbin ZHOU, 2003: Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 849-858.  doi: 10.1007/BF02915509

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2002
Manuscript revised: 10 May 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Application of Linear Thermodynamics to the Atmospheric System. Part Ⅰ: Linear Phenomenological Relations and Thermodynamic Property of the Atmospheric System

  • 1. Resource Environment College of Lanzhou University, Lanzhou 730000

Abstract: A series of thermodynamic property of the atmospheric system can be deducted, in accordance with re striction of the general thermodynamics theory or other nature principle to saddle on the phenomenological relation. The relationship between the turbulence transport coefficients of K turbulence close theory and the phenomenological coefficients are deduced using the linear thermodynamics of nonequilibrium state. A cross coupling between the heat transportation and the vapor transportation in the atmospheric system is proved. Even a turbulence intensity theorem is demonstrated. The distributional heterogeneity of velocity and potential temperature is the turbulence fountainhead and the turbulence intensity is proportional to the scalar product of velocity and potential temperature gradient in the non-compressed and isotropy turbulence atmosphere. More about an atmospheric vortex theorem is demonstrated. The shear of potential tem perature leads to a vortex movement or sundry circumfluence movement and the velocity vorticity equals to the vector product of velocity and potential temperature gradient. An application foreground of the linear thermodynamics is exhibited to the atmosphere system.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return