Advanced Search
Article Contents

Simulations of Stable Isotopic Fractionation in Mixed Cloud in Middle Latitudes―Taking the Precipitation at ürǖmqi as an Example


doi: 10.1007/s00376-003-0012-9

  • The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), δD = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of b and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the b and d, and vice versa. However, b and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Urumqi is simulated. The simulated stable isotopic ratio vs temperature and the δD vs δ18O curves are very consistent with the actual regressions and MWL at Uruimqi, respectively.
  • [1] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [2] BI Yun, CHEN Yuejuan, ZHOU Renjun, YI Mingjian, DENG Shumei, 2011: Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 832-842.  doi: 10.1007/s00376-010-0047-7
    [3] BI Yun, CHEN Yuejuan, ZHOU Renjun, YI Mingjian, DENG Shumei, 2011: Simulation of the Effect of an Increase in Methane on Air Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 129-138.  doi: 10.1007/s00376-010-9197-x
    [4] ZHANG Hua, ZHANG Ruoyu, and SHI Guangyu, 2013: An updated estimation of radiative forcing due to CO2 and its effect on global surface temperature change, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1017-1024.  doi: 10.1007/s00376-012-2204-7
    [5] LIN Pengfei, LIU Hailong, ZHANG Xuehong, 2008: Effect of Chlorophyll-a Spatial Distribution on Upper Ocean Temperature in the Central and Eastern Equatorial Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 585-596.  doi: 10.1007/s00376-008-0585-4
    [6] Dong Chaohua, Liu Quanhua, Li Guangqing, Zhang Fengying, 1990: The Study of In-Orbit Calibration Accuracy of NOAA Satellite Infrared Sounder and Its Effect on Temperature Profile Retrievals, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 211-219.  doi: 10.1007/BF02919159
    [7] TANG Yakun, WEN Xuefa, SUN Xiaomin, ZHANG Xinyu, WANG Huimin, 2014: The Limiting Effect of Deep Soil Water on Evapotranspiration of a Subtropical Coniferous Plantation Subjected to Seasonal Drought, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 385-395.  doi: 10.1007/s00376-013-2321-y
    [8] LI Jun, CHEN Hongbin, Zhanqing LI, WANG Pucai, Maureen CRIBB, FAN Xuehua, 2015: Low-Level Temperature Inversions and Their Effect on Aerosol Condensation Nuclei Concentrations under Different Large-Scale Synoptic Circulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 898-908.  doi: 10.1007/s00376-014-4150-z
    [9] Fang Juan, Wu Rongsheng, 2001: Topographic Effect on Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 524-538.  doi: 10.1007/s00376-001-0042-0
    [10] CHEN Lianshou, LUO Zhexian, 2004: A Study of the Effect of Topography on the Merging of Vortices, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 13-22.  doi: 10.1007/BF02915676
    [11] Xiaohong BAO, Xiuping YAO, 2022: Intensity Evolution of Zonal Shear Line over the Tibetan Plateau in Summer: A Perspective of Divergent and Rotational Kinetic Energies, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1021-1033.  doi: 10.1007/s00376-021-1302-9
    [12] Youngsaeng LEE, Sanghoo YOON, Md. Sharwar MURSHED, Maeng-Ki KIM, ChunHo CHO, Hee-Jeong BAEK, Jeong-Soo PARK, 2013: Spatial Modeling of the Highest Daily Maximum Temperature in Korea via Max-stable Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1608-1620.  doi: 10.1007/s00376-013-2216-y
    [13] DUAN Yihong, WU Rongsheng, YU Hui, LIANG Xudong, Johnny C L CHAN, 2004: The Role of -effect and a Uniform Current on Tropical Cyclone Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 75-86.  doi: 10.1007/BF02915681
    [14] MIAO Shiguang, LI Pingyang, WANG Xiaoyun, 2009: Building Morphological Characteristics and Their Effect on the Wind in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1115-1124.  doi: 10.1007/s00376-009-7223-7
    [15] LING Jian, LI Chongyin, ZHOU Wen, JIA Xiaolong, Chidong ZHANG, 2013: Effect of Boundary Layer Latent Heating on MJO Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 101-115.  doi: 10.1007/s00376-012-2031-x
    [16] FANG Juan, TANG Jianping, WU Rongsheng, 2009: The Effect of Surface Friction on the Development of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1146-1156.  doi: 10.1007/s00376-009-8020-z
    [17] Zhao Ming, 1991: The Effect of Topography on Quasi-Geostrophic Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 23-40.  doi: 10.1007/BF02657362
    [18] Zhang Pei, Ni Yunqi, 1991: Effect of Nonlinear Dynamic Process on Formation and Breakdown of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 41-50.  doi: 10.1007/BF02657363
    [19] Zhang Pei, Ni Yunqi, 1991: The Effect of Topographic Forcing on the Formation and Maintenance of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 317-326.  doi: 10.1007/BF02919614
    [20] PENG Yuehua, DUAN Wansuo, XIANG Jie, 2011: Effect of Stochastic MJO Forcing on ENSO Predictability, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1279-1290.  doi: 10.1007/s00376-011-0126-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2003
Manuscript revised: 10 March 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Simulations of Stable Isotopic Fractionation in Mixed Cloud in Middle Latitudes―Taking the Precipitation at ürǖmqi as an Example

  • 1. College of Resources and Environment Sciences, Hunan Normal University, Changsha 410081;Chinese Academy of Meteorological Sciences, Beijing 100081,Laboratory of Ice and Cold Regions Environment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,Chinese Academy of Meteorological Sciences, Beijing 100081,Laboratory of Ice and Cold Regions Environment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,Research Institute for Humanity and Nature, Kyoto 602-0878, Japan

Abstract: The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), δD = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of b and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the b and d, and vice versa. However, b and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Urumqi is simulated. The simulated stable isotopic ratio vs temperature and the δD vs δ18O curves are very consistent with the actual regressions and MWL at Uruimqi, respectively.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return