Advanced Search
Article Contents

Statistical Analysis and Comparative Study of Energy Balance Components Estimated Using Micrometeorological Techniques during HUBEX/IOP 1998/99


doi: 10.1007/s00376-003-0014-7

  • In order to study energy and water cycles in the Huaihe River Basin, micrometeorological measurements were carried out in Shouxian County, Anhui Province, during HUBEX/IOP (May to August 1998 and June to July 1999). The employed techniques included Bowen Ratio-Energy Balance (BREB) and Eddy Covariance (EC) methods. In this paper, the basic characteristics of the energy balance components in the district are analyzed. Furthermore, the results are compared with those from other regions of China.The main results are as follows: (1) There was a consistency between the available energy (Rn-G) and the sum of sensible (H) and latent (E) heat fluxes measured by the EC method (H+E)ec, but Ebr was slightly larger (about 10%) than Eec; (2) Most of the net radiation (Rn) was used to evaporate water from the surface. During HUBEX/IOP in 1998 and 1999, the mean daily amounts of Rn were 13.89 MJ m-2 d-1 and 11.83 MJ m-2 d-1, and the mean Bowen Ratios (β) were 0.14 (over ruderal) and 0.06 (over paddy) respectively; (3) The diurnal variation characteristic of β was larger and unsteady at sunrise and sunset, and smaller and steady during the rest of the daytime. Local advection appeared in the afternoon over paddy areas in 1999; (4) In comparison with the results from other regions of China, the nean β was the lowest (0.06) over paddy areas in the Huaihe River Basin and the highest (0.57) during June-August 1998 in Inner Mongolia grassland. The Bowen Ratio β is mainly related to the soil humidity.
  • [1] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [2] Shiyan ZHANG, Yongyun HU, Jiankai ZHANG, Yan XIA, 2024: Attribution of Biases of Interhemispheric Temperature Contrast in CMIP6 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 325-340.  doi: 10.1007/s00376-023-3002-0
    [3] GUO Xiaofeng, ZHANG Hongsheng, CAI Xuhui, KANG Ling, LI Wanbiao, DU Jinlin, 2007: Discrepancy and Applicability of Various Similarity Functions in Flux Calculations Under Stable Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 644-654.  doi: 10.1007/s00376-007-0644-2
    [4] Yuanchun ZHANG, Jianhua SUN, Shenming FU, 2017: Main Energy Paths and Energy Cascade Processes of the Two Types of Persistent Heavy Rainfall Events over the Yangtze River-Huaihe River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 129-143.  doi: 10.1007/s00376-016-6117-8
    [5] Yang Xiaosong, Lin Zhaohui, Dai Yongjiu, Guo Yufu, 2001: Validation of IAP94 Land Surface Model over the Huaihe River Basin with HUBEX Field Experiment Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 139-154.  doi: 10.1007/s00376-001-0009-1
    [6] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [7] WANG Runyuan, ZHANG Qiang, 2011: An Assessment of Storage Terms in the Surface Energy Balance of a Subalpine Meadow in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 691-698.  doi: 10.1007/s00376-010-9152-x
    [8] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [9] Zhixuan WANG, Jilin SUN, Jiancheng WU, Fangyue NING, Weiqi CHEN, 2020: Attribution of Persistent Precipitation in the Yangtze–Huaihe River Basin during February 2019, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1389-1404.  doi: 10.1007/s00376-020-0107-6
    [10] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [11] Xu Hui, Zhang Weiping, Lang Xuxing, Guo Xia, Ge Wenzhong, Dang Renqing, TakaoTakeda, 2000: The Use of Dual-Doppler Radar Data in the Study of 1998 Meiyu Frontal Precipitation in Huaihe River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 403-412.  doi: 10.1007/s00376-000-0032-7
    [12] YANG Hui, LI Chongyin, 2003: The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 540-553.  doi: 10.1007/BF02915497
    [13] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.
    [14] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [15] Qian WEI, Jianhua SUN, Shenming FU, Yuanchun ZHANG, Xiaofang WANG, 2024: Spatiotemporal Characteristics of Rainfall over Different Terrain Features in the Middle Reaches of the Yangtze River Basin during the Warm Seasons of 2016–20, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 915-936.  doi: 10.1007/s00376-023-3034-5
    [16] Li Hongji, Xu Hong, Wang Ronghua, 1988: A HIGH-RESOLUTION ANALYSIS METHOD OF INSTABILITY ENERGY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 75-86.  doi: 10.1007/BF02657348
    [17] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [18] He Jinhai, T. Murakami, T. Nakazawa, 1987: ENERGY BALANCE IN 40-50 DAY PERIODIC OSCILLATION OVER THE ASIAN SUMMER MONSOON REGION DURING THE 1979 SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 66-73.  doi: 10.1007/BF02656662
    [19] Yu LI, Keyi CHEN, Zhipeng XIAN, 2021: Evaluation of All-Sky Assimilation of FY-3C/MWHS-2 on Mei-yu Precipitation Forecasts over the Yangtze-Huaihe River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1397-1414.  doi: 10.1007/s00376-021-0401-y
    [20] CHENG Xinghong, SU Debin, LI Deping, CHEN Lu, XU Wenjing, YANG Meilin, LI Yongcheng, YUE Zhizhong, WANG Zijing, 2014: An Improved Method for Correction of Air Temperature Measured Using Different Radiation Shields, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1460-1468.  doi: 10.1007/s00376-014-3129-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2003
Manuscript revised: 10 March 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Statistical Analysis and Comparative Study of Energy Balance Components Estimated Using Micrometeorological Techniques during HUBEX/IOP 1998/99

  • 1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101

Abstract: In order to study energy and water cycles in the Huaihe River Basin, micrometeorological measurements were carried out in Shouxian County, Anhui Province, during HUBEX/IOP (May to August 1998 and June to July 1999). The employed techniques included Bowen Ratio-Energy Balance (BREB) and Eddy Covariance (EC) methods. In this paper, the basic characteristics of the energy balance components in the district are analyzed. Furthermore, the results are compared with those from other regions of China.The main results are as follows: (1) There was a consistency between the available energy (Rn-G) and the sum of sensible (H) and latent (E) heat fluxes measured by the EC method (H+E)ec, but Ebr was slightly larger (about 10%) than Eec; (2) Most of the net radiation (Rn) was used to evaporate water from the surface. During HUBEX/IOP in 1998 and 1999, the mean daily amounts of Rn were 13.89 MJ m-2 d-1 and 11.83 MJ m-2 d-1, and the mean Bowen Ratios (β) were 0.14 (over ruderal) and 0.06 (over paddy) respectively; (3) The diurnal variation characteristic of β was larger and unsteady at sunrise and sunset, and smaller and steady during the rest of the daytime. Local advection appeared in the afternoon over paddy areas in 1999; (4) In comparison with the results from other regions of China, the nean β was the lowest (0.06) over paddy areas in the Huaihe River Basin and the highest (0.57) during June-August 1998 in Inner Mongolia grassland. The Bowen Ratio β is mainly related to the soil humidity.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return