Advanced Search
Article Contents

Analysis of Ice Water Path Retrieval Errors Over Tropical Ocean


doi: 10.1007/s00376-006-0165-4

  • Retrieval of multi-layered cloud properties, especially ice water path (IWP), is one of the most perplexing problems in satellite cloud remote sensing. This paper develops a method for improving the IWP retrievals for ice-over-water overlapped cloud systems using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Visible and Infrared Scanner (VIRS) data. A combined microwave, visible and infrared algorithm is used to identify overlapped clouds and estimate IWP separately from liquid water path. The retrieval error of IWP is then evaluated by comparing the IWP to that retrieved from single-layer ice clouds surrounding the observed overlapping systems. The major IWP retrieval errors of overlapped clouds are primarily controlled by the errors in estimating the visible optical depth. Optical depths are overestimated by about 10–40% due to the influence of the underlying cloud. For the ice-over-warm-water cloud systems (cloud water temperature Tw > 273 K), the globally averaged IWP retrieval error is about 10%. This cloud type accounts for about 15% of all high-cloud overlapping cases. Ice-over-super-cooled water clouds are the predominant overlapped cloud system, accounting for 55% of the cases. Their global averaged error is 17.2%. The largest IWP retrieval error results when ice clouds occur over extremely super-cooled water clouds (Tw 6 255 K). Overall, roughly 33% of the VIRS IWP retrievals are overestimated due to the effects of the liquid water clouds beneath the cirrus clouds. To improve the accuracy of the IWP retrievals, correction models are developed and applied to all three types of overlapped clouds. The preliminary results indicate that the correction models reduce part of the retrieval error.
  • [1] Anqi CAI, Xiaolei ZOU, 2019: Latitudinal and Scan-dependent Biases of Microwave Humidity Sounder Measurements and Their Dependences on Cloud Ice Water Path, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 557-569.  doi: 10.1007/s00376-019-8190-2
    [2] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [3] HONG Gang, Georg HEYGSTER, Klaus KUNZI, LI Wanbiao, ZHU Yuanjing, ZHAO Bolin, 2003: Retrieval of Microwave Surface Emissivities at TMI Frequencies in Shouxian, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 253-259.  doi: 10.1007/s00376-003-0011-x
    [4] Shuang LUO, Yunfei FU, Shengnan ZHOU, Xiaofeng WANG, Dongyong WANG, 2020: Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 359-376.  doi: 10.1007/s00376-020-9204-9
    [5] LI Lijuan, Yuqing WANG, WANG Bin, ZHOU Tianjun, 2008: Sensitivity of the Grid-point Atmospheric Model of IAP LASG (GAMIL1.1.0) Climate Simulations to Cloud Droplet Effective Radius and Liquid Water Path, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 529-540.  doi: 10.1007/s00376-008-0529-z
    [6] Zhao Bolin, 1990: Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 475-490.  doi: 10.1007/BF03342566
    [7] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [8] WANG Han, SUN Xiaobing, SUN Bin, LIANG Tianquan, LI Cuili, and HONG Jin, 2014: Retrieval of Aerosol Optical Properties over a Vegetation Surface Using Multi-angular, Multi-spectral, and Polarized data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 879-887.  doi: 10.1007/s00376-013-3100-5
    [9] Lijun ZHAO, Yuan WANG, Chuanfeng ZHAO, Xiquan DONG, Yuk L. YUNG, 2022: Compensating Errors in Cloud Radiative and Physical Properties over the Southern Ocean in the CMIP6 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2156-2171.  doi: 10.1007/s00376-022-2036-z
    [10] Sibo ZHANG, Li GUAN, 2017: Preliminary Study on Direct Assimilation of Cloud-affected Satellite Microwave Brightness Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 199-208.  doi: 10.1007/s00376-016-6043-9
    [11] HUANG Yi, WANG Meihua, MAO Jietai, 2004: Retrieval of Upper Tropospheric Relative Humidity by the GMS-5 Water Vapor Channel: A Study of the Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 53-60.  doi: 10.1007/BF02915680
    [12] WANG Xin, Lü Daren, 2005: Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 759-764.  doi: 10.1007/BF02918719
    [13] Yuanwen ZHANG, Guiwan CHEN, Jian LING, Shenming FU, Chongyin LI, 2021: A Case Study on MJO Energy Transport Path in a Local Multi-scale Interaction Framework, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1929-1944.  doi: 10.1007/s00376-021-1098-7
    [14] XU Dongmei, Thomas AULIGNÈ, Xiang-Yu HUANG, 2015: A Validation of the Multivariate and Minimum Residual Method for Cloud Retrieval Using Radiance from Multiple Satellites, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 349-362.  doi: 10.1007/s00376-014-3258-5
    [15] Lesi WEI, Huazhe SHANG, Jian XU, Chong SHI, Gegen TANA, Kefu CHAO, Shanhu BAO, Liangfu CHEN, Husi LETU, 2024: Cloud Top Pressure Retrieval Using Polarized and Oxygen A-band Measurements from GF5 and PARASOL Satellites, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 680-700.  doi: 10.1007/s00376-023-2382-5
    [16] REN Zhihua, LI Mingqin, 2007: Errors and Correction of Precipitation Measurements in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 449-458.  doi: 10.1007/s00376-007-0449-3
    [17] Yan XIA, Yongyun HU, Jiping LIU, Yi HUANG, Fei XIE, Jintai LIN, 2020: Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 505-514.  doi: 10.1007/s00376-019-8251-6
    [18] LI Xingyu, GUO Xueliang, ZHU Jiang, 2008: Climatic Features of Cloud Water Distribution and Cycle over China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 437-446.  doi: 10.1007/s00376-008-0437-2
    [19] Bo LIU, Juan HUO, Daren LYU, Xin WANG, 2021: Assessment of FY-4A and Himawari-8 Cloud Top Height Retrieval through Comparison with Ground-Based Millimeter Radar at Sites in Tibet and Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1334-1350.  doi: 10.1007/s00376-021-0337-2
    [20] Wenxiu Zhong, Qian Shi, Jiping Liu, Qinghua Yang, Song Yang, 2024: Wintertime Arctic Sea Ice Decline Related to Multi-Year La Niña Events, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3194-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2006
Manuscript revised: 10 March 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Analysis of Ice Water Path Retrieval Errors Over Tropical Ocean

  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000

Abstract: Retrieval of multi-layered cloud properties, especially ice water path (IWP), is one of the most perplexing problems in satellite cloud remote sensing. This paper develops a method for improving the IWP retrievals for ice-over-water overlapped cloud systems using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Visible and Infrared Scanner (VIRS) data. A combined microwave, visible and infrared algorithm is used to identify overlapped clouds and estimate IWP separately from liquid water path. The retrieval error of IWP is then evaluated by comparing the IWP to that retrieved from single-layer ice clouds surrounding the observed overlapping systems. The major IWP retrieval errors of overlapped clouds are primarily controlled by the errors in estimating the visible optical depth. Optical depths are overestimated by about 10–40% due to the influence of the underlying cloud. For the ice-over-warm-water cloud systems (cloud water temperature Tw > 273 K), the globally averaged IWP retrieval error is about 10%. This cloud type accounts for about 15% of all high-cloud overlapping cases. Ice-over-super-cooled water clouds are the predominant overlapped cloud system, accounting for 55% of the cases. Their global averaged error is 17.2%. The largest IWP retrieval error results when ice clouds occur over extremely super-cooled water clouds (Tw 6 255 K). Overall, roughly 33% of the VIRS IWP retrievals are overestimated due to the effects of the liquid water clouds beneath the cirrus clouds. To improve the accuracy of the IWP retrievals, correction models are developed and applied to all three types of overlapped clouds. The preliminary results indicate that the correction models reduce part of the retrieval error.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return