Advanced Search
Article Contents

A Generalized Layered Radiative Transfer Model in the Vegetation Canopy


doi: 10.1007/s00376-006-0243-7

  • In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.
  • [1] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [2] GAO Zhiqiu, BIAN Lingen, CHEN Zhigang, Michael SPARROW, ZHANG Jiahua, 2006: Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 365-374.  doi: 10.1007/s00376-006-0365-y
    [3] Yu Zhihao, Chen Liangdong, 1985: THE INFLUENCE OF HORIZONTALLY NON-UNIFORM HEATING UPON THE DEVELOPMENT OF STRONG CONVECTIVE MESOSCALE DISTURBANCES, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 347-358.  doi: 10.1007/BF02677251
    [4] DAI Qiudan, SUN Shufen, 2007: A Simplified Scheme of the Generalized Layered Radiative Transfer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 213-226.  doi: 10.1007/s00376-007-0213-8
    [5] DAI Tie, SHI Guangyu, Teruyuki NAKAJIMA, 2015: Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 743-758.  doi: 10.1007/s00376-014-4098-z
    [6] WANG Yunfeng, WANG Bin, 2003: The Variational Assimilation Experiment of GPS Bending Angle, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 479-486.  doi: 10.1007/BF02690806
    [7] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [8] WANG Leidi, LÜ Daren, HE Qing, 2015: The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 759-771.  doi: 10.1007/s00376-014-4131-2
    [9] Jinhe YU, Lei BI, Wei HAN, Xiaoye ZHANG, 2022: Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2024-2039.  doi: 10.1007/s00376-021-1375-5
    [10] LIANG Hong, ZHANG Renhe, LIU Jingmiao, SUN Zhian, CHENG Xinghong, 2012: Estimation of Hourly Solar Radiation at the Surface under Cloudless Conditions on the Tibetan Plateau Using a Simple Radiation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 675-689.  doi: 10.1007/s00376-012-1157-1
    [11] Shen YAN, Jie XIANG, Huadong DU, 2019: Determining Atmospheric Boundary Layer Height with the Numerical Differentiation Method Using Bending Angle Data from COSMIC, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 303-312.  doi: 10.1007/s00376-018-7308-2
    [12] HAN Xiao, ZHANG Meigen, ZHU Lingyun, and XU Liren, 2013: Model analysis of influences of aerosol mixing state upon its optical properties in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1201-1212.  doi: 10.1007/s00376-012-2150-4
    [13] LI Jiandong, Zhian SUN, LIU Yimin, Jiangnan LI, Wei-Chyung WANG, WU Guoxiong, 2012: A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1185-1199.  doi: 10.1007/s00376-012-1257-y
    [14] Nicholas EDKINS, Werner SCHMUTZ, Luca EGLI, Roger DAVIES, Teruo AOKI, Greg McFARQUHAR, 2016: The International Radiation Symposium 2016, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1325-1328.  doi: 10.1007/s00376-016-6180-1
    [15] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [16] BAI Jianhui, WANG Gengchen, 2003: Establishing a Ultraviolet Radiation Observational Network and Enhancing the Study on Ultraviolet Radiation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 767-774.  doi: 10.1007/BF02915401
    [17] HU Bo, WANG Yuesi, LIU Guangren, 2012: Relationship between Net Radiation and Broadband Solar Radiation in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 135-143.  doi: 10.1007/s00376-011-0221-6
    [18] BAI Jianhui, WANG Gengchen, HU Fei, 2003: Ultraviolet Radiation in Overcast Sky at the Surface, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 1007-1009.  doi: 10.1007/BF02915524
    [19] Jie SUN, Michael SECOR, Ming CAI, Xiaoming HU, 2024: A Quasi-Linear Relationship between Planetary Outgoing Longwave Radiation and Surface Temperature in a Radiative-Convective-Transportive Climate Model of a Gray Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 8-18.  doi: 10.1007/s00376-023-2386-1
    [20] Wu Guoxiong, Stefano Tibaldi, 1987: THE EFFECTS OF MECHANICAL FORCING ON THE MEAN MERIDIONAL CIRCULATION AND TRANSFER PROPERTIES OF THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 24-42.  doi: 10.1007/BF02656659

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2006
Manuscript revised: 10 March 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Generalized Layered Radiative Transfer Model in the Vegetation Canopy

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return