Advanced Search
Article Contents

Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River


doi: 10.1007/s00376-006-0267-z

  • A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso- -scale vortex. The analysis shows that a meso- -scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso- -scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso- -scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso- -scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso- -scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso- -scale vortex, as is commonly done in tropical cyclone prediction.
  • [1] ZHAI Guoqing, ZHOU Lingli, WANG Zhi, 2007: Analysis of a Group of Weak Small-Scale Vortexes in the Planetary Boundary Layer in the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 399-408.  doi: 10.1007/s00376-007-0399-9
    [2] WANG Zhi, GAO Kun, 2003: Sensitivity Experiments of an Eastward-Moving Southwest Vortex to Initial Perturbations, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 638-649.  doi: 10.1007/BF02915507
    [3] ZHENG Qin*, SHA Jianxin, SHU Hang, and LU Xiaoqing, 2014: A Variant Constrained Genetic Algorithm for Solving Conditional Nonlinear Optimal Perturbations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 219-229.  doi: 10.1007/s00376-013-2253-6
    [4] XIANG Jie, LIAO Qianfeng, HUANG Sixun, LAN Weiren, FENG Qiang, ZHOU Fengcai, 2006: An Application of the Adjoint Method to a Statistical-Dynamical Tropical-Cyclone Prediction Model (SD–90) II: Real Tropical Cyclone Cases, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 118-126.  doi: 10.1007/s00376-006-0012-7
    [5] DING Yihui, SHI Xueli, LIU Yiming, LIU Yan, LI Qingquan, QIAN Yongfu, MIAO Manqian, ZHAI Guoqing, GAO Kun, 2006: Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM NCC). Part I: Sensitivity Study, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 323-341.  doi: 10.1007/s00376-006-0487-2
    [6] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024
    [7] CHU Ke-Kuan, TAN Zhe-Min, 2010: Mesoscale Moist Adjoint Sensitivity Study of a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1415-1424.  doi: 10.1007/s00376-010-9213-1
    [8] LI Jianglong, ZHANG Xuehong, YU Yongqiang, DAI Fushan, 2004: Primary Reasoning behind the Double ITCZ Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 857-867.  doi: 10.1007/BF02915588
    [9] ZHANG Meng, NI Yunqi, ZHANG Fuqing, 2007: Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 509-526.  doi: 10.1007/s00376-007-0509-8
    [10] SUN Jianhua, ZHANG Xiaoling, QI Linlin, ZHAO Sixiong, 2005: An Analysis of a Meso-β System in a Mei-yu Front Using the Intensive Observation Data During CHeRES 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 278-289.  doi: 10.1007/BF02918517
    [11] SUN Jianhua, ZHAO Sixiong, XU Guangkuo, MENG Qingtao, 2010: Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1193-1209.  doi: 10.1007/s00376-009-9156-6
    [12] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART I: OBSERVATIONAL STUDIES, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 264-277.  doi: 10.1007/BF02915593
    [13] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α-SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART II: THE DYNAMICAL ANALYSIS OF RAIN-BAND DISTURBANCE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 485-495.  doi: 10.1007/BF02656747
    [14] LIU Jianyong, TAN Zhe-Min, 2009: Mesoscale Predictability of Mei-yu Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 438-450.  doi: 10.1007/s00376-009-0438-9
    [15] XU Wenhui, NI Yunqi, WANG Xiaokang, QIU Xuexing, BAO Xinghua, JIN Wenyan, 2011: A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part I: Diagnostic Analysis of the Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1159-1176.  doi: 10.1007/s00376-010-0170-5
    [16] Kelvin S. NG, Gregor C. LECKEBUSCH, Kevin I. HODGES, 2022: A Causality-guided Statistical Approach for Modeling Extreme Mei-yu Rainfall Based on Known Large-scale Modes—A Pilot Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1925-1940.  doi: 10.1007/s00376-022-1348-3
    [17] Zipeng YUAN, Xiaoyong ZHUGE, Yuan WANG, 2020: The Forced Secondary Circulation of the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 766-780.  doi: 10.1007/s00376-020-9177-8
    [18] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [19] Peng Jiayi, Wu Rongsheng, Wang Yuan, 2002: Initiation Mechanism of Meso-β Scale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 870-884.  doi: 10.1007/s00376-002-0052-6
    [20] YANG Shuai, GAO Shouting, Chungu LU, 2015: Investigation of the Mei-yu Front Using a New Deformation Frontogenesis Function, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 635-647.  doi: 10.1007/s00376-014-4147-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2006
Manuscript revised: 10 March 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River

  • 1. Shanghai Meteorology Center, Shanghai 200030,Department of Earth Sciences, Zhejiang University, Hangzhou 310027

Abstract: A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso- -scale vortex. The analysis shows that a meso- -scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso- -scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso- -scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso- -scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso- -scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso- -scale vortex, as is commonly done in tropical cyclone prediction.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return