Advanced Search
Article Contents

The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China


doi: 10.1007/s00376-006-0355-0

  • The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.
  • [1] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [2] Dong-Kyou LEE, William J. GUTOWSKI, Jr., Hyun-Suk KANG, Chun-Ji KIM, 2007: Intercomparison of Precipitation Simulated by Regional Climate Models over East Asia in 1997 and 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 539-554.  doi: 10.1007/s00376-007-0539-2
    [3] Lin Zhaohui, Zeng Qingcun, 1997: Simulation of East Asian Summer Monsoon by Using an Improved AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 513-526.  doi: 10.1007/s00376-997-0069-y
    [4] SUN Li, SHEN Baizhu, GAO Zongting, SUI Bo, Lesheng BAI, Sheng-Hung WANG, AN Gang, LI Jian, 2007: The Impacts of Moisture Transport of East Asian Monsoon on Summer Precipitation in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 606-618.  doi: 10.1007/s00376-007-0606-8
    [5] Cheng Anning, Chen Wen, Huang Ronghui, 1998: The Sensitivity of Numerical Simulation of the East Asian Monsoon to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 204-220.  doi: 10.1007/s00376-998-0040-6
    [6] Wang Huijun, 2000: The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 31-47.  doi: 10.1007/s00376-000-0041-6
    [7] Zhang Renhe, 2001: Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1005-1017.
    [8] Suk-Jin CHOI, Dong-Kyou LEE, 2016: Impact of Spectral Nudging on the Downscaling of Tropical Cyclones in Regional Climate Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 730-742.  doi: 10.1007/s00376-016-5061-y
    [9] HUANG Ronghui, ZHOU Liantong, CHEN Wen, 2003: The Progresses of Recent Studies on the Variabilities of the East Asian Monsoon and Their Causes, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 55-69.  doi: 10.1007/BF03342050
    [10] Ma Henian, Ding Yihui, 1997: The Present Status and Future of Research of the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 125-140.  doi: 10.1007/s00376-997-0015-z
    [11] WU Yunfei, ZHANG Renjian, HAN Zhiwei, ZENG Zhaomei, 2010: Relationship between East Asian Monsoon and Dust Weather Frequency over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1389-1398.  doi: 10.1007/s00376-010-9181-5
    [12] Yang Yan, Li Zhijin, Ji Liren, 1997: Adjoint Sensitivity Analyses on the Anomalous Circulation Features in East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 111-123.  doi: 10.1007/s00376-997-0050-9
    [13] Zhang Renhe, Akimasa Sumi, Masahide Kimoto, 1999: A Diagnostic Study of the Impact of El Nino on the Precipitation in China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 229-241.  doi: 10.1007/BF02973084
    [14] Wang Shiyu, Qian Yongfu, 2001: Modeling of the 1998 East Asian Summer Monsoon by a Limited Area Model with Incorporated Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 209-224.  doi: 10.1007/s00376-001-0014-4
    [15] ZHANG Ran, JIANG Dabang, ZHANG Zhongshi, 2015: Causes of Mid-Pliocene Strengthened Summer and Weakened Winter Monsoons over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1016-1026.  doi: 10.1007/s00376-014-4183-3
    [16] HUANG Ronghui, CHEN Wen, YANG Bangliang, ZHANG Renhe, 2004: Recent Advances in Studies of the Interaction between the East Asian Winter and Summer Monsoons and ENSO Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 407-424.  doi: 10.1007/BF02915568
    [17] Yi Lan, 1995: Characteristics of the Mean Water Vapor Transport over Monsoon Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 195-206.  doi: 10.1007/BF02656832
    [18] LI Zhen, YAN Zhongwei, TU Kai, LIU Weidong, WANG Yingchun, 2011: Changes in Wind Speed and Extremes in Beijing during 1960--2008 Based on Homogenized Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 408-420.  doi: 10.1007/s00376-010-0018-z
    [19] Dabang JIANG, Dan HU, Zhiping TIAN, Xianmei LANG, 2020: Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1102-1118.  doi: 10.1007/s00376-020-2034-y
    [20] HUANG Ronghui, CHEN Jilong, HUANG Gang, 2007: Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 993-1023.  doi: 10.1007/s00376-007-0993-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2006
Manuscript revised: 10 May 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China

  • 1. Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Chinese Academy of Sciences, Beijing 100029,Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101,Anhui Meteorological Observatory, Hefei 230031

Abstract: The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return