Advanced Search
Article Contents

Methane and Nitrous Oxide Emissions from Three Paddy Rice Based Cultivation Systems in Southwest China


doi: 10.1007/s00376-006-0415-5

  • To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm?2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm?2 yr?1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PFRRURW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.
  • [1] WANG Yuesi, HU Yuqiong, JI Baoming, LIU Guangren, XUE Min, 2003: An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Semiarid Grassland, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 119-127.  doi: 10.1007/BF03342056
    [2] Huang Yao, Jiang Jingyan, Zong Lianggang, Ronald L. Sass, Frank M. Fisher, 2001: Comparison of Field Measurements of CH4 Emission from Rice Cultivation in Nanjing, China and in Texas, USA, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1121-1130.  doi: 10.1007/s00376-001-0027-z
    [3] SHANG Lin, LIU Yi, TIAN Wenshou, ZHANG Yuli, 2015: Effect of Methane Emission Increases in East Asia on Atmospheric Circulation and Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1617-1627.  doi: 10.1007/s00376-015-5028-4
    [4] WANG Yuesi, WANG Yinghong, 2003: Quick Measurement of CH4, CO2 and N2O Emissions from a Short-Plant Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 842-844.  doi: 10.1007/BF02915410
    [5] Gou Ji, Zheng Xunhua, Wang Mingxing, Li Changsheng, 1999: Modeling N2O Emissions from Agricultural Fields in Southeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 581-592.  doi: 10.1007/s00376-999-0033-0
    [6] Weniqan JIANG, Yong Li, Siqi LI, Meihui Wang, Bo Wang, Ji LIU, Jianlin Shen, Xunhua Zheng, 2024: Refining the factors affecting N2O emissions from upland soils with or without N fertilizer application at a global scale, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3234-7
    [7] SHEN Shuanghe, YANG Dong, XIAO Wei, LIU Shoudong, Xuhui LEE, 2014: Constraining Anthropogenic CH4 Emissions in Nanjing and the Yangtze River Delta, China, Using Atmospheric CO2 and CH4 Mixing Ratios, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1343-1352.  doi: 10.1007/s00376-014-3231-3
    [8] ZHOU Zaixing, ZHENG Xunhua, XIE Baohua, HAN Shenghui, LIU Chunyan, 2010: A process-based model of N2O emission from a rice-winter wheat rotation agroecosystem: structure, validation and sensitivity, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 137-150.  doi: 10.1007/s00376-009-8191-7
    [9] SU Mingfeng, LIN Yunping, FAN Xinqiang, PENG Li, ZHAO Chunsheng, 2012: Impacts of Global Emissions of CO, NOx, and CH4 on China Tropospheric Hydroxyl Free Radicals, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 838-854.  doi: 10.1007/s00376-012-1229-2
    [10] Minqiang ZHOU, Qichen NI, Zhaonan CAI, Bavo LANGEROCK, Jingyi JIANG, Ke CHE, Jiaxin WANG, Weidong NAN, Yi LIU, Pucai WANG, 2023: Ground-Based Atmospheric CO2, CH4, and CO Column Measurements at Golmud in the Qinghai-Tibetan Plateau and Comparisons with TROPOMI/S5P Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 223-234.  doi: 10.1007/s00376-022-2116-0
    [11] Zhang Renjian, Wang Mingxing, 1999: Modeling the Sudden Decrease in CH4 Growth Rate in 1992, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 242-250.  doi: 10.1007/BF02973085
    [12] ZHOU Libo, ZOU Han, GAO Yongqi, 2006: Middle-High Latitude N2O Distributions Related to the Arctic Vortex Breakup, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 215-223.  doi: 10.1007/s00376-006-0215-y
    [13] ZHU Renbin, SUN Liguang, YIN Xuebin, LIU Xiaodong, XING Guangxi, 2004: Summertime Surface N2O Concentration Observed on Fildes Peninsula Antarctica: Correlation with Total Atmospheric O3 and Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 204-210.  doi: 10.1007/BF02915706
    [14] Wenjing HUANG, Timothy J. GRIFFIS, Cheng HU, Wei XIAO, Xuhui LEE, 2021: Seasonal Variations of CH4 Emissions in the Yangtze River Delta Region of China Are Driven by Agricultural Activities, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1537-1551.  doi: 10.1007/s00376-021-0383-9
    [15] WANG Geli, YANG Peicai, 2006: On the Nonlinear Response of Lower Stratospheric Ozone to Nox and ClOx Perturbations for Different CH4 Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 750-757.  doi: 10.1007/s00376-006-0750-6
    [16] WANG Yinghong, WANG Yuesi, LING Hong, 2010: A New Carrier Gas Type for Accurate Measurement of N$_{2}$O by GC-ECD, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1322-1330.  doi: 10.1007/s00376-010-9212-2
    [17] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [18] Xiaoxin WANG, Dabang JIANG, Xianmei LANG, 2018: Climate Change of 4°C Global Warming above Pre-industrial Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 757-770.  doi: 10.1007/s00376-018-7160-4
    [19] Wang Gengchen, Kong Qinxin, 1984: AN EXPERIMENTAL STUDY ON ABSORPTION PROPERTIES OF NO, N0_2, NH_3, CO_2 AND H_2O BY USING LINE-TUNABLE CO LASER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 112-127.  doi: 10.1007/BF03187622
    [20] Na LI, Lingkun RAN, Linna ZHANG, Shouting GAO, 2017: Potential Deformation and Its Application to the Diagnosis of Heavy Precipitation in Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 894-908.  doi: 10.1007/s00376-017-6282-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2006
Manuscript revised: 10 May 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Methane and Nitrous Oxide Emissions from Three Paddy Rice Based Cultivation Systems in Southwest China

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of the Chinese Academy of Sciences, Beijing 100039,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of the Chinese Academy of Sciences, Beijing 100039

Abstract: To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm?2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm?2 yr?1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PFRRURW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return