Advanced Search
Article Contents

Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003


doi: 10.1007/s00376-006-0468-5

  • Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0 μgm?3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μgm?3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and 2.39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m?3 for winter and 4.2 μg m?3 for summer.
  • [1] XIN Jinyuan, WANG Yuesi, WANG Lili, TANG Guiqian, SUN Yang, PAN Yuepeng, JI Dongsheng, 2012: Reductions of PM2.5 in Beijing--Tianjin--Hebei Urban Agglomerations during the 2008 Olympic Games, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1330-1342.  doi: 10.1007/s00376-012-1227-4
    [2] LIU Dameng, GAO Shaopeng, AN Xianghua, 2008: Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 297-305.  doi: 10.1007/s00376-008-0297-9
    [3] LI Xuxiang, CAO Junji, Judith CHOW, HAN Yongming, Shuncheng LEE, John WATSON, 2008: Chemical Characteristics of Carbonaceous Aerosols During Dust Storms over Xi'an in China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 847-855.  doi: 10.1007/s00376-008-0847-1
    [4] SUN Yang, WANG Yuesi, ZHANG Changchun, 2010: Vertical Observations and Analysis of PM2.5, O3, and NOx at Beijing and Tianjin from Towers during Summer and Autumn 2006, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 123-136.  doi: 10.1007/s00376-009-8154-z
    [5] Lan GAO, Xu YUE, Xiaoyan MENG, Li DU, Yadong LEI, Chenguang TIAN, Liang QIU, 2020: Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1297-1309.  doi: 10.1007/s00376-020-0054-2
    [6] Nan WANG, Zhenhao LING, Xuejiao DENG, Tao DENG, Xiaopu LYU, Tingyuan LI, Xiaorong GAO, Xi CHEN, 2018: Source Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1145-1159.  doi: 10.1007/s00376-018-7212-9
    [7] Chuwei LIU, Zhongwei HUANG, Jianping HUANG, Chunsheng LIANG, Lei DING, Xinbo LIAN, Xiaoyue LIU, Li Zhang, Danfeng WANG, 2022: Comparison of PM2.5 and CO2 Concentrations in Large Cities of China during the COVID-19 Lockdown, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 861-875.  doi: 10.1007/s00376-021-1281-x
    [8] Qiuyan DU, Chun ZHAO, Jiawang FENG, Zining YANG, Jiamin XU, Jun GU, Mingshuai ZHANG, Mingyue XU, Shengfu LIN, 2024: Seasonal Characteristics of Forecasting Uncertainties in Surface PM2.5 Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 801-816.  doi: 10.1007/s00376-023-3060-3
    [9] Zexuan WANG, Hongmei XU, Rong FENG, Yunxuan GU, Jian SUN, Suixin LIU, Ningning ZHANG, Dan LI, Tao WANG, Linli QU, Steven Sai Hang HO, Zhenxing SHEN, Junji CAO, 2023: Characteristics of PM2.5 and Its Reactive Oxygen Species in Heating Energy Transition and Estimation of Its Impact on the Environment and Health in China—A Case Study in the Fenwei Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1175-1186.  doi: 10.1007/s00376-022-2249-1
    [10] Eric C. H. CHOW, Richard C. Y. LI, Wen ZHOU, 2018: Influence of Tropical Cyclones on Hong Kong Air Quality, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1177-1188.  doi: 10.1007/s00376-018-7225-4
    [11] LIU Hongnian, ZHANG Li, WU Jian, 2010: A Modeling Study of the Climate Effects of Sulfate and Carbonaceous Aerosols over China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1276-1288.  doi: 10.1007/s00376-010-9188-y
    [12] GE Cui, ZHANG Meigen, HAN Zhiwei, LIU Yanju, 2011: Episode Simulation of Asian Dust Storms with an Air Quality Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 511-520.  doi: 10.1007/s00376-010-0091-3
    [13] ZHANG Renjian, FU Congbin, HAN Zhiwei, ZHU Chongshu, 2008: Characteristics of Elemental Composition of PM2.5 in the Spring Period at Tongyu in the Semi-arid Region of Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 922-931.  doi: 10.1007/s00376-008-0922-7
    [14] YANG Fumo, Jeffrey BROOK, HE Kebin, DUAN Fengkui, MA Yongliang, 2010: Temporal Variability in Fine Carbonaceous Aerosol over Two Years in Two Megacities: Beijing and Toronto, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 705-714.  doi: 10.1007/s00376-009-9103-6
    [15] Roeland Cornelis JANSEN, SHI Yang, CHEN Jianmin, HU YunJie, XU Chang, HONG Shengmao, LI Jiao, ZHANG Min, 2014: Using Hourly Measurements to Explore the Role of Secondary Inorganic Aerosol in PM2.5 during Haze and Fog in Hangzhou, China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1427-1434.  doi: 10.1007/s00376-014-4042-2
    [16] TAO Jun, CHENG Tiantao, ZHANG Renjian, CAO Junji, ZHU Lihua, WANG Qiyuan, LUO Lei, and ZHANG Leiming, 2013: Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1070-1084.  doi: 10.1007/s00376-012-2168-7
    [17] Denghui JI, Zhaoze DENG, Xiaoyu SUN, Liang RAN, Xiangao XIA, Disong FU, Zijue SONG, Pucai WANG, Yunfei WU, Ping TIAN, Mengyu HUANG, 2020: Estimation of PM2.5 Mass Concentration from Visibility, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 671-678.  doi: 10.1007/s00376-020-0009-7
    [18] Miaomiao LU, Xiao TANG, Zifa WANG, Lin WU, Xueshun CHEN, Shengwen LIANG, Hui ZHOU, Huangjian WU, Ke HU, Longjiao SHEN, Jia YU, Jiang ZHU, 2019: Investigating the Transport Mechanism of PM2.5 Pollution during January 2014 in Wuhan, Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1217-1234.  doi: 10.1007/s00376-019-8260-5
    [19] Xiao HAN, Meigen ZHANG, 2021: The Interannual Variation of Transboundary Contributions from Chinese Emissions of PM2.5 to South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 701-706.  doi: 10.1007/s00376-021-1003-4
    [20] TAO Jun, CAO Jun-Ji, ZHANG Ren-Jian, ZHU Lihua, ZHANG Tao, SHI Si, CHAN Chuen-Yu, 2012: Reconstructed Light Extinction Coefficients Using Chemical Compositions of PM2.5 in Winter in Urban Guangzhou, China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 359-368.  doi: 10.1007/s00376-011-1045-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2006
Manuscript revised: 10 May 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003

  • 1. Beijing Municipal Environmental Monitoring Center, Beijing 100044, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Beijing Municipal Environmental Monitoring Center, Beijing 100044,Laboratoire des Sciences du Climat et de l’Environment, France,Laboratoire des Sciences du Climat et de l’Environment, France,Beijing Municipal Environmental Monitoring Center, Beijing 100044,Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Beijing Municipal Environmental Monitoring Center, Beijing 100044

Abstract: Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0 μgm?3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μgm?3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and 2.39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m?3 for winter and 4.2 μg m?3 for summer.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return