Advanced Search
Article Contents

Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China


doi: 10.1007/s00376-006-0593-1

  • Summer precipitation products from the 45-Year European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40), and NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2), and Climatic Research Unit (CRU) TS 2.1 dataset are compared with the corresponding observations over China in order to understand the quality and utility of the reanalysis datasets for the period 1979–2001. The results reveal that although the magnitude and location of the rainfall belts differ among the reanalysis, CRU, and station data over South and West China, the spatial distributions show good agreement over most areas of China. In comparison with the observations in most areas of China, CRU best matches the observed summer precipitation, while ERA-40 reports less precipitation and NCEP-2 reports more precipitation than the observations. With regard to the amplitude of the interannual variations, CRU is better than either of the reanalyses in representing the corresponding observations. The amplitude in NCEP-2 is stronger but that of ERA-40 is weaker than the observations in most study domains. NCEP-2 has a more obvious interannual variability than ERA-40 or CRU in most areas of East China. Through an Empirical orthogonal function (EOF) analysis, the main features of the rainfall belts produced by CRU agree better with the observations than with those produced by the reanalyses in the Yangtze-Huaihe River valley. In East of China, particularly in the Yangtze-Huaihe River valley, CRU can reveal the quasi-biennial oscillation of summer precipitation represented by the observations, but the signal of ERA-40 is comparatively weak and not very obvious, whereas that of NCEP-2 is also weak before 1990 but very strong after 1990. The results also suggest that the magnitude of the precipitation difference between ERA-40 and the observations is smaller than that between NCEP-2 and the observations, but the variations represented by NCEP-2 are more reasonable than those given by ERA-40 in most areas of East China to some extent.
  • [1] Deniz BOZKURT, David H. BROMWICH, Jorge CARRASCO, Keith M. HINES, Juan Carlos MAUREIRA, Roberto RONDANELLI, 2020: Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 477-493.  doi: 10.1007/s00376-020-9183-x
    [2] QI Yuchun, DONG Yunshe, Manfred DOMROES, GENG Yuanbo, LIU Lixin, LIU Xingren, 2006: Comparison of CO2 Effluxes and Their Driving Factors Between Two Temperate Steppes in Inner Mongolia, China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 726-736.  doi: 10.1007/s00376-006-0726-6
    [3] XIE Jiping, ZHU Jiang, XU Li, GUO Pinwen, 2005: Evaluation of Mid-Depth Currents of NCEP Reanalysis Data in the Tropical Pacific Using ARGO Float Position Information, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 677-684.  doi: 10.1007/BF02918711
    [4] ZHAO Tianbao, FU Congbin, 2009: Intercomparison of the Summertime Subtropical High from the ERA-40 and NCEP/NCAR Reanalysis over East Eurasia and the western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 119-131.  doi: 10.1007/s00376-009-0119-8
    [5] MA Jiehua, WANG Huijun, FAN Ke, 2015: Dynamic Downscaling of Summer Precipitation Prediction over China in 1998 Using WRF and CCSM4, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 577-584.  doi: 10.1007/s00376-014-4143-y
    [6] Junhu ZHAO, Liu YANG, Bohui GU, Jie YANG, Guolin FENG, 2016: On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 743-752.  doi: 10.1007/s00376-015-5195-3
    [7] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [8] Jun WANG, Jinming FENG, Qizhong WU, Zhongwei YAN, 2016: Impact of Anthropogenic Aerosols on Summer Precipitation in the Beijing-Tianjin-Hebei Urban Agglomeration in China: Regional Climate Modeling Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 753-766.  doi: 10.1007/s00376-015-5103-x
    [9] Wushan YING, Huiping YAN, Jing-Jia LUO, 2022: Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1561-1578.  doi: 10.1007/s00376-022-1389-7
    [10] Chujie GAO, Gen LI, 2023: Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1632-1648.  doi: 10.1007/s00376-023-2361-x
    [11] Yizhe HAN, Dabang JIANG, Dong SI, Yaoming MA, Weiqiang MA, 2024: Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020: Role of Soil Moisture, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2363-8
    [12] GAO Rong, WEI Zhigang, DONG Wenjie, ZHONG Hailing, 2005: Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 238-245.  doi: 10.1007/BF02918513
    [13] CHEN Huopo, SUN Jianqi, 2009: How the “Best” Models Project the Future Precipitation Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 773-782.  doi: 10.1007/s00376-009-8211-7
    [14] ZHANG Jingyong, DONG Wenjie, FU Congbin, WU Lingyun, 2003: The Influence of Vegetation Cover on Summer Precipitation in China: a Statistical Analysis of NDVI and Climate Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 1002-1006.  doi: 10.1007/BF02915523
    [15] TANG Yanbing, 2004: Connections between Surface Sensible Heat Net Flux and Regional Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 897-908.  doi: 10.1007/BF02915592
    [16] Imoleayo Ezekiel GBODE, Toju Esther BABALOLA, Gulilat Tefera DIRO, Joseph Daniel INTSIFUL, 2023: Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 570-586.  doi: 10.1007/s00376-022-2161-8
    [17] Chunlei LIU, Yazhu YANG, Xiaoqing LIAO, Ning CAO, Jimmy LIU, Niansen OU, Richard P. ALLAN, Liang JIN, Ni CHEN, Rong ZHENG, 2022: Discrepancies in Simulated Ocean Net Surface Heat Fluxes over the North Atlantic, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1941-1955.  doi: 10.1007/s00376-022-1360-7
    [18] XIAO Cunde, QIN Dahe, YAO Tandong, DING Yongjian, LIU Shiyin, ZHAO Lin, LIU Yujie, 2008: Progress on Observation of Cryospheric Components and Climate-Related Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 164-180.  doi: 10.1007/s00376-008-0164-8
    [19] Irina V. GORODETSKAYA, Tiago SILVA, Holger SCHMITHÜSEN, Naohiko HIRASAWA, 2020: Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 455-476.  doi: 10.1007/s00376-020-9221-8
    [20] YAN Changxiang, ZHU Jiang, XIE Jiping, 2015: An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1460-1472.  doi: 10.1007/s00376-015-4121-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2006
Manuscript revised: 10 July 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China

  • 1. Global Change System for Analysis, Research and Training, Regional Center for Temperate East Asia Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 10002,Global Change System for Analysis, Research and Training, Regional Center for Temperate East Asia Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 10002

Abstract: Summer precipitation products from the 45-Year European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40), and NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2), and Climatic Research Unit (CRU) TS 2.1 dataset are compared with the corresponding observations over China in order to understand the quality and utility of the reanalysis datasets for the period 1979–2001. The results reveal that although the magnitude and location of the rainfall belts differ among the reanalysis, CRU, and station data over South and West China, the spatial distributions show good agreement over most areas of China. In comparison with the observations in most areas of China, CRU best matches the observed summer precipitation, while ERA-40 reports less precipitation and NCEP-2 reports more precipitation than the observations. With regard to the amplitude of the interannual variations, CRU is better than either of the reanalyses in representing the corresponding observations. The amplitude in NCEP-2 is stronger but that of ERA-40 is weaker than the observations in most study domains. NCEP-2 has a more obvious interannual variability than ERA-40 or CRU in most areas of East China. Through an Empirical orthogonal function (EOF) analysis, the main features of the rainfall belts produced by CRU agree better with the observations than with those produced by the reanalyses in the Yangtze-Huaihe River valley. In East of China, particularly in the Yangtze-Huaihe River valley, CRU can reveal the quasi-biennial oscillation of summer precipitation represented by the observations, but the signal of ERA-40 is comparatively weak and not very obvious, whereas that of NCEP-2 is also weak before 1990 but very strong after 1990. The results also suggest that the magnitude of the precipitation difference between ERA-40 and the observations is smaller than that between NCEP-2 and the observations, but the variations represented by NCEP-2 are more reasonable than those given by ERA-40 in most areas of East China to some extent.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return